

HEAT TRANSFER GENERAL CATALOGUE

Follow us on social media!

Sustainable Innovation, **Quality Standardization and Dynamism**

Ekin has entered Turkey's sector of the imported plate heat exchanger, with their customer-focused vision and dynamic. Ekin has expanded into new and upcoming investments. One of the main steps was gaining the identity of being a producer. Ekin has started the production of plate heat exchangers with the brand of "MIT". We have grown in the philosophy of quality, through initially adapting to ISO Quality Management.

MIT plate heat exchangers have now become a solution to engineering problems in the world market and have grown through an expansion of franchises.

Engineering Approaches, Integrated Solutions

Ekin has expanded into the production of components, sales, and after-sales service by employing expert engineers. The factors that guided Ekin to success are their exceptional customer service to the needs and wants of consumers, modern facilities, and becoming partners to projects that involve high-end technology.

Ekin is an expert company which has a wide product range which includes plate heat exchangers, accumulation tanks, water heater tanks, installation, and its service group and submit competitive advantages to mechanical installation sector in Turkey and all around the world.

APPLICATION FIELDS

HEAT TRANSFER PRODUCTS

· Gasketed Plate Heat Exchangers · Brazed Heat Exchangers • Shell&Tube Heat Exchangers • Air Fan Oil Cooler • Economizers • Coils and Radiators

PRESSURE VESSELS

- Water Heater Tanks
 Water Storage Tanks
 Buffer Tanks • Expansion Tanks • Stainless Steel Process Tanks . Balance Tanks / Dirt Separators / Air Separators
- Pressured Air Tanks
 Neutralization Tanks
 Air Tubes
- Steel IBC Tanks with ADR

COMPLETE SYSTEMS UNITS

FOOD GRADE SYSTEMS

- Pasteurizers with plate heat exchangers
 Hygienic Pasteurizers with Shell & Tube Heat Exchangers
- Cheese and whey Systems
 UHT Sterilization Systems
- CIP Systems Hygienic Storage and Process Tanks
 Homogenizers Standartization Systems Evaporators
- Turn-key Projects

FLUID TRANSFER PRODUCTS

- Lobe Pumps Hygienic Centrifuge Pumps Turbo / Roots / Centrifuge Blowers • Drum Pumps • Acid Pumps
- Dosing Pumps
 Monopumps
 Air operated Double Diaphragm Pumps (AODD)

VALVES

- Thermoplastic Valves
- Plastomatic Valves

ENERGY SYSTEMS

- Solar Collectors
- Water Heater Tanks for Solar

Content Plate Heat Exchanger Brazed Heat Exchanger Tube Heat Exchanger Hydraulic Oil Cooler

PLATE HEAT EXCHANGER

MIT PLATE HEAT EXHANGERS

MIT, one of the most known and preferred brands of Turkey, has been continuing creating new ideas and developments to improve plate heat exchanger sector.

Ekin aims to develop its product range and the most concrete proof of this determination is MIT plate heat exchangers.

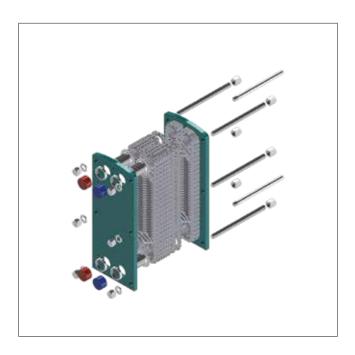
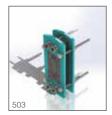

Working Principle of MIT Plate Heat Exchangers

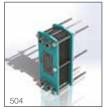
Plate heat exchangers are devices that operate according to the principle of heat transfer between two different fluids with temperature difference. Heating fluid and the fluid to be heated are completely separated by plates.

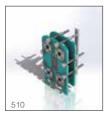
The standard plate heat exchangers have a total of four inlet-outlet ports, two of which are the inlet and outlet of the heating fluid and the other two of the fluid to be heated. It is also possible to produce heat exchangers with more than one heater or heating fluid with customized production.

Components

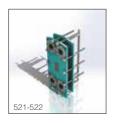
- Front body with input-output connections and information,
- Upper and lower carrying shafts used to secure the plates,
- The first plate that prevents the liquid from contacting with the body,
- Flow plates that allow the passage of fluids and heat transfer.
- Completely closed end plate, which prevents fluid from coming into contact with the rear body,
- Rear body that can move on the shaft,
- It consists of studs and knots, which ensure that the plates are kept at a certain size.

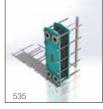

The label on the front body specifies the information of:

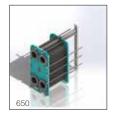

- Model information.
- Production number,
- Capacity information
- Maximum and minimum working temperature,
- Test and operation pressure,
- Minimum tightening size,
- Ekin contact information is available.

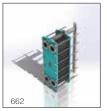


GASKETED PLATE HEAT EXCHANGERS







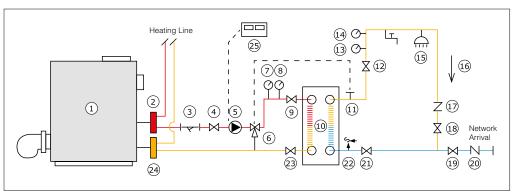


Model	503	504	505	508	509	510	513	514	517	520
Width (mm)	167,5	200	180	293	292	425	350	350	334	400
Height (mm)	397	490	480	772	782	704	946	946	1044	890
Depth MinMax. (mm)	250-500	250-500	250-500	250-1000	250-1000	250-2000	250-2000	250-2000	250-2000	250-2500
Horizontal Axis Range (mm)	50	72	60	100	100	203	140	140	150	225
Vertical Axis Range (mm)	298	385	357	546	546	380	640	640	800	719
Max. Operating Pressure (bar)	25	25	25	25	25	25	25	25	25	25
Test Operating Pressure (bar)	37,5	37,5	37,5	37,5	37,5	37,5	37,5	37,5	37,5	37,5
Weight (kg)	16+0,15n	23+0,25n	22+0,25n	64+0,46n	64+0,44n	78+0,6n	98+0,75n	98+0,75n	108+1,01n	156+1,15n
Connection Diameter	1 Threaded	1 1/4" Threaded	1 1/4" Threaded	2" Threaded/ Flanged	2" Threaded/ Flanged	2 1/2" Threaded/ Flanged	2" Threaded/ Flanged	2" Threaded/ Flanged	2 1/2" Flanged	3" Flanged

Model	521	522	523	535	547	650	662	685	6125	6180
Width (mm)	470	470	350	465	491	765	608	780	920	1190
Height (mm)	1090	1090	1264	1445	1775	1485	1830	2100	2895	2920
Depth MinMax. (mm)	350-2500	350-2500	350-2500	350-2500	350-2500	500-4000	500-4000	500-4000	500-5000	500-5000
Horizontal Axis Range (mm)	223,5	223,5	140	238	221,5	366	298	353	439	596
Vertical Axis Range (mm)	718	718	1036	1070	1338	935	1294	1478	1939	1842
Max. Operating Pressure (bar)	25	25	25	25	25	25	25	25	25	25
Test Operating Pressure (bar)	37,5	37,5	37,5	33	37,5	37,5	37,5	37,5	37,5	33
Weight (kg)	225+125n	225+125n	163+1,26n	294+1,63n	414+2,45n	720+3,2n	547+3,1n	850+3,8n	1280+4,4n	1460+5,6n
Connection Diameter	4" Flanged	4" Flanged	2" Threaded/ Flanged	3" Flanged	4" Flanged	8" Flanged	6" Threaded/ Flanged	8" Flanged	10" Flanged	12" Threaded

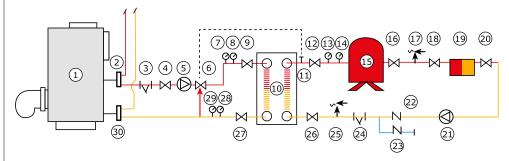
Mate	erials
Plate Material	AISI 316, Titanyum, Hastelloy
Connection Material	Carbon Steel, Stainless Steel, Plastic
Body Material	Carbon Steel, Stainless Steel
Gasket Material	EPDM, EPDM-HT, NBR, H-NBR, VITON, VITON-G

HVAC - HEATING, COOLING AND VENTILATING


Usage Areas

Obtaining Hot Water

Domestic hot water in industry and housing is a must for comfort. With MIT plate heat exchangers, your domestic water can be produced centrally or individually. Compared to old systems, it is more hygienic, more efficient, longer lasting, more economical and more compact. With this system, your system can achieve its old performance with minor revisions, instead of replacing the system in case of problems such as residual calcification and excess chlorine-induced deformation.

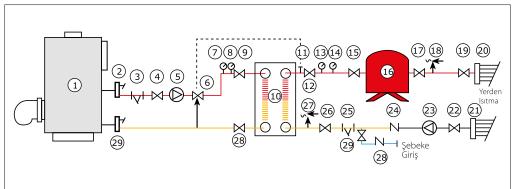


1	Boiler	6	Threeway rational valve	11	Temperature Sensor	16	Recirculation	21	Valve
2	Line Collector	7	Thermometer	12	Valve	17	Check Valve	22	Safety Valve
3	Dirt Holder	8	Manometer	13	Thermometer	18	Valve	23	Valve
4	Valve	9	Valve	14	Manometer	19	Valve	24	Returning Collector
5	Pump	10	Heat Exchanger	15	Usage Area	20	Check Valve	25	Control Panel

Localized Heating

By using hot water from sources such as regional heat centers, geothermal resources and electricity generation facilities; a region, a district, even a complete province can be heated. With the MIT plate heat exchangers specially designed according to the type of the source, the zone can be separated into zones and placed under each building and hot water can be produced according to the needs of the buildings.

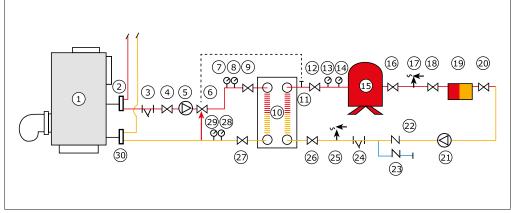
1	Boiler	7	Thermometer	13	Thermometer	19	Radiator	25	Safety Valve
2	Line Collectors	8	Manometer	14	Manometer	20	Radiator Valve	26	Valve
3	Dirt Holder	9	Valve	15	Expansion Deposit	21	Circulation Pump	27	Valve
4	Valve	10	Heat Exchanger	16	Valve	22	Check Valve	28	Thermometer
5	Circulation Pump	11	Temperature Sensor	17	Safety Valve	23	Check Valve	29	Manometre
6	Threeway Valve	12	Valve	18	Radiator Valve	24	Dirt Holder	30	Returning Collector



Floor Heating Systems

The MIT plate heat exchangers, which are used to prevent the heating source from being affected by corrosion in underfloor heating systems, which are frequently used in areas where more heating comfort is desired recently, serves as a protective

wall between the heated area and the heating source. Thanks to its high corrosion resistance, carbon steel body, stainless steel plate and special designs, MIT plate heat exchangers guarantee years of trouble-free operation.

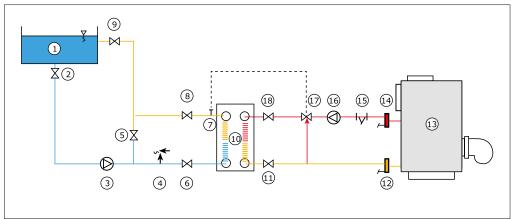

1	Boiler	7	Thermometer	13	Thermometer	19	Valve	25	Dirt Holder
2	Line Collectors	8	Manometer	14	Monometer	20	Floor Heating Going Collector	26	Valve
3	Dirt Holder	9	Valve	15	Valve	21	Floor Heating Returning Collector	27	Safety Valve
4	Valve	10	Heat Exchanger	16	Expansion Deposit	22	Valve	28	Valve
5	Circulation Pump	11	Temperature Sensor	17	Valve	23	Circulation Pump	29	Returning Collector
6	Threeway Valve	12	Valve	18	Safety Valve	24	Check Valve		

Pressure Reducer

In high-rise buildings, severe pressures arise from the height of the system. Sending this pressure from the system to the bottom of the heatingcooling system causes the system to overload and fatigue. In addition, the initial investment cost is very high since the installation is to be installed with high pressure armatures. In these systems,

MIT plate heat exchangers which are resistant to high pressure to be placed between the boiler room or the cooler group and the installation meet the pressure coming from the system and ensure the boiler-cooling system in the primary circuit to operate at low pressures.

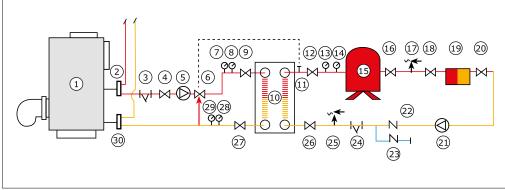
1	Boiler	7	Thermometer	13	Thermometer	19	Radiator	25	Safety Valve
2	Line Collectors	8	Manometer	14	Monometer	20	Radiator Valve	26	Valve
3	Dirt Holder	9	Valve	15	Expansion Deposit	21	Circulation Pump	27	Valve
4	Valve	10	Heat Exchanger	16	Valve	22	Check Valve	28	Thermometer
5	Circulation Pump	11	Temperature Sensor	17	Safety Valve	23	Check Valve	29	Manometre
6	Threeway Valve	12	Valve	18	Radiator Valve	24	Dirt Holder	30	Returning Collector

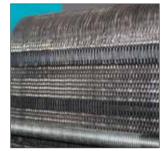


Pool Heating

All the pools must be between certain temperatures, whether for swimming pool or health. MIT plate heat exchangers are used with the help of simple automation to keep the pools between the desired temperatures. Due to their

compact design, the MIT plate heat exchangers cover very little space in the engine room of your pool, allowing you to keep the pool at the desired temperature.

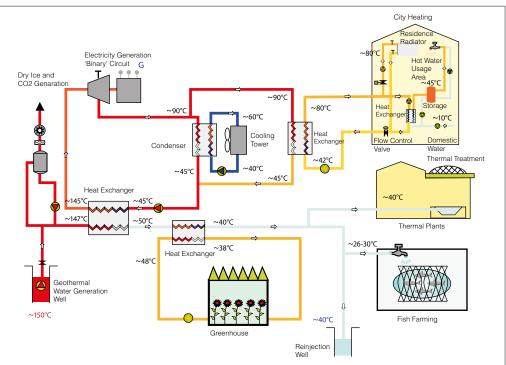

1	Pool	5	Valve	9	Valve	13	Boiler	17	Threeway Valve
2	Valve	6	Valve	10	Heat Exchanger	14	Line Collector	18	Valve
3	Pool Circulation Pump	7	Temperature Sensor	11	Valve	15	Dirt Holder		
4	Safety Valve	8	Valve	12	Returning Collector	16	Boiler Circulation Pump		


Central Heating Systems

As a part of new laws in our country, central systems are encouraged and it has been becoming mandatory in some situations. The main cause oft his is that central system is more efficent

compared to individual use and consumes less energy. MIT Plate Heat Exchangers are able to produce hot water for heating of residental areas and for utility purposes.

1	Boiler	7	Thermometer	13	Thermometer	19	Radiator	25	Safety Valve
2	Line Collectors	8	Manometer	14	Manometer	20	Radiator Valve	26	Valve
3	Dirt Holder	9	Valve	15	Expansion Deposit	21	Circulation Pump	27	Valve
4	Valve	10	Heat Exchanger	16	Valve	22	Check Valve	28	Thermometer
5	Circulation Pump	11	Temperature Sensor	17	Safety Valve	23	Check Valve	29	Manometre
6	Threeway Valve	12	Valve	18	Radiator Valve	24	Dirt Holder	30	Returning Collector



ENERGY

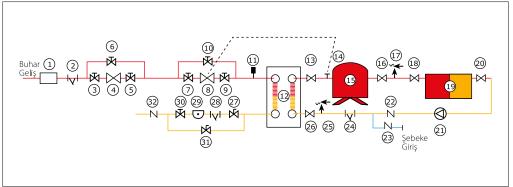
Geothermal Heating Systems

Turkey is rich in geothermal resources and after the recent energy crisis, Turkey has accelerated its investments in this field. MIT plate heat exchangers, which are used in both domestic heating and domestic water production, proved their success in the sector and became one of the most preferred brands in this regard.

Heat Energy Recovery Systems

In today's conditions, where energy is getting more expensive day by day, there is no need to waste energy in industry or individual use. The budgets allocated to energy in industrial establishments have increased by 20% -40% in recent years and they are at the top of the

expenses section. Taking all these points into account, the recovery of energy has become very important. MIT plate heat exchangers prevent the waste of your thermal energy with wide variety of plate and gaskets suitable for each system.



Electricity Production Plants

Thermal power plants are places where electricity is produced, as well as very large sources of hot water. Extra systems for cooling the hot water that is generated in these systems are installed and a lot of money is spent. At this point, MIT plate

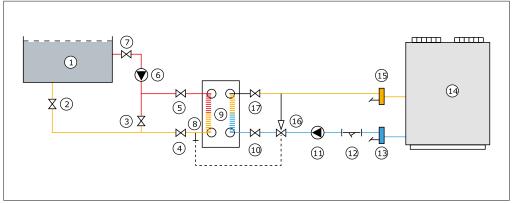
heat exchangers are activated and they provide free cooling of water in these systems as well as providing a complete heating of the area with the heat energy taken from it.

1	Seperator	7	Valve	13	Valve	19	Radiator	25	Safety Valve
2	Dirt Holder	8	Thermostatic Valve	14	Temperature Sensor	20	Valve	26	Valve
3	Valve	9	Valve	15	Expansion Tank	21	Circulation Pump	27	Valve
4	Pressure Reducer	10	Valve	16	Valve	22	Check Valve	28	Dirt Holder
5	Valve	11	Vacuum Breaker	17	Safety Valve	23	Check Valve	29	Steam Trap
6	Valve	12	Heat Exchange	18	Valve	24	Dirt Holder	30	Valve

Solar Energy Systems

When it comes to alternative energy, the first thing that comes to mind is solar energy systems. In these systems, which provide free energy for domestic hot water supply and residential heating, MIT plate heat exchangers, which are used as instant water heater, provide more efficient and safer operation of the system and thus prolong the life of the system.

INDUSTRY


Cooling of Rolled Oil

The oil used in the rolling mills becomes hot as a result of the process and the lubricating properties are reduced; as a result, operating performance is reduced. MIT plate heat exchangers are used to keep the rolling oil at optimum temperature. With the cooling tower and the chiller circuit connected to the secondary circuit of the heat exchanger, and a simple automation, your rolling oil remains constant at the desired temperatures and your plant operates at maximum performance.

Boron Oil Cooling

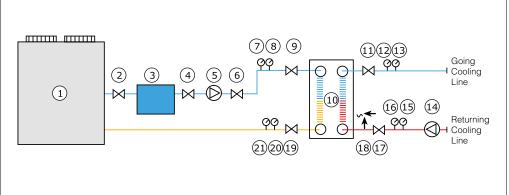
Boron oil, one of the cornerstones of industry, is the lifeblood especially for metal cutting. The quality and temperature of the boron oil are very important for maximum efficiency and maximum life from the cutting edge. In order to keep the boron oil at optimum temperature, the cooling tower or chiller used with MIT plate heat exchangers provides maximum efficiency.

1	Oil Tank	5	Valve	9	Heat Exchanger	13	Going Collector	17	Valve
2	Valve	6	Oil Circulation Pump	10	Valve	14	Cooling Tower		
3	Valve	7	Valve	11	Circulation Pump	15	Returning Collector		
4	Valve	8	Oil Tank	12	Dirt Holder	16	Threeway Rational Valve		

Chiller Group Circuit

The cooling tower is generally insufficient for applications where low temperature water is desired. Therefore, chillers are preferred in these applications. Chiller groups are generally very sensitive, expensive and difficult to repair. Therefore, in case of any negative situation that

may arise from the installation, large damages can occur. The MIT plate heat exchangers separate the system from the chiller circuit, allowing the two systems to operate independently of each other, as well as the heat transfer between them.



Cooling Group Circuit

Nowadays, cooling towers are the most commonly used cooling source to meet the cooling needs of industrial plants. MIT plate heat exchangers are used in both types of these open and closed towers. Since some solid particles from the medium are mixed into the water in the open towers, the water where these particles are located cannot be sent. Directly to the system to be cooled. Using

the MIT plate heat exchanger between the system to be cooled and the open tower, the two systems are separated as two separate circuits and the MIT plate heat exchangers collect all the risks on themselves. In case of contamination over time, only the heat exchanger can be cleaned and the system will perform the same performance again.


1	Cooling Group	6	Valve	11	Valve	16	Manometer	21	Manometer
2	Valve	7	Thermometer	12	Thermometer	17	Valve		
3	Tank	8	Manometer	13	Manometer	18	Safety Valve		
4	Valve	9	Valve	14	Circulation Pump	19	Valve		
5	Circulation Pump	10	Heat Exchanger	15	Thermometer	20	Thermometer		

Waste Heat Recovery

Industrial facilities have many wasted heat sources such as rotten steam and hot water returning from fabric washing. At the same time, there are applications that require heat, such as domestic hot water production and office heating. With the MIT plate heat exchanger you will use to transfer heat from existing heat sources to the part that needs heat, you do not waste your heat and you need to save extra heat for the heat requirement. Nowadays,

the most important factor that will relax businesses is to reduce costs. Energy expenses, one of the biggest factor in expenses, are now worth the gold for everyone and cannot be ignored. A heat exchanger to be used for heat recovery with a rough calculation now pays off in 3-6 months and starts to add value to the operation in a short time.

STAINLESS HEAT EXCHANGERS

The difference of food plate heat exchangers from other heat exchangers is their hygienic nature in terms of their bodies and all surfaces in contact with food are produced as stainless. In addition, the gaskets have FDA (food conformity) certificate.

Usage Areas

- Milk Heating Cooling
- Pasteurisers
- JJuice Pasteurisers

- Cream Cooling
- Brine Heating Cooling
- Whey Processing

MARINE

Cooling Systems in Ships

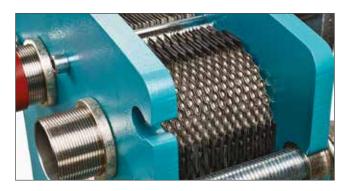
Engine cooling systems are divided into two. Direct and two-circuit (indirect) and indirect, two-circuit (indirect) cooling. Direct cooling is smooth and suitable for engines designed as marine engines. Cylinder blocks and other water-circulating equipment are protected by seawater-resistant alloys and anchors. Most outboard marine engines and small powered internal engines are built in this way. A motor driven marine seawater pump absorbs water and circulates it in the engine and provides cooling. In normal use, the engine does not reach the ideal operating temperature required and runs cold, since this pump is sized to provide adequate cooling even when the motor is most stressed. For this reason, a by-pass line and thermostat have been developed to regulate the flow of water sent to the engine and to provide sufficient heating of the engine.

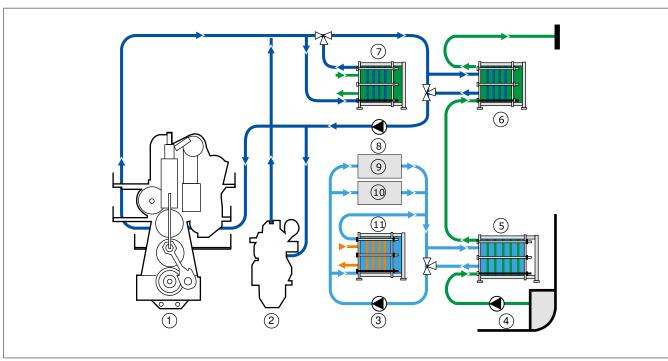
In two-circuit cooling systems, the fresh water circulates inside the engine (just like in motor vehicles or stationary industrial engines).

Thus, the internal parts of the engine are protected from the effects of sea water.

The seawater pump (which can also feed the exhaust system and sleeve bearings to the water at the same time.) Sends sea water to a MIT plate heat exchanger. The warmed fresh water from the engine is circulated in the plates inside the MIT plate heat exchanger.

Central Heating Systems


In the central cooling systems, the fresh water circulation line on the secondary side is cooled using sea water. The cold water in this cooled fresh water circulation line acts as a refrigerant for the heat exchangers in cooling systems such as engine cooling, jacket water cooling. The use of fresh water in the secondary circuit reduces the corrosion and wear of the circuit elements in the machine lines and minimizes the backup and maintenance costs. MIT plate heat exchangers make your system safer and last longer.

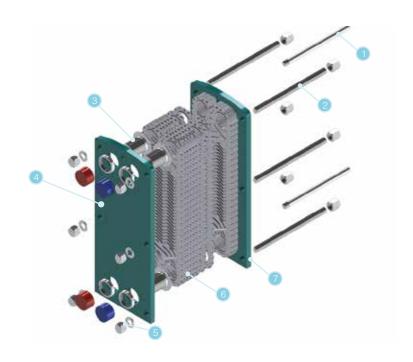

With the MIT plate heat exchangers offering the most suitable solutions for all capacities, your initial investment costs are kept to a minimum. In our heat exchangers, which are fully compatible with all systems with different plate angles and types, stainless steel and titanium plates are offered as standard and they can use different plate materials to suit your needs. In maritime sector, standard bodies can be used as well as complete aluminum and aluminum alloy light bodies which are specially designed for the sector can be used when weight is important.

The most important problem of the maritime sector is the highly corrosive effect of seawater. MIT plate heat exchangers are always on your side to solve this problem with complete titanium and titanium alloy 316 plates. MIT plate heat exchangers are the only solution point of the sector with plate, gasket and body types suitable for every process that may be needed on a ship.

Other cooling applications on board;

- Main Motor Cooling
- Lubricating Lubricating Oil
- Camshaft Cooling
- Fuel Oil Heating
- Water Distillation Cooler

1	Main Engine	4	Sea Water Pumps	7	Preheater For Sea Water Desalination	10	Charge Air Cooler M.E.
2	Aux. Engine	5	LT - Central Coolers	8	HT - Fresh Water Pumps	11	Lube oil cooler M.E.
3	LT - Fresh Water Pumps	6	HT - Central Coolers	9	Auxiliaries		



MIT PLATE HEAT EXCHANGER TECHNOLOGY

The MIT plate heat exchangers, which are the rising value of the plate heat exchanger market, always receive their real power from the design team that supports them. Ekin, which proves that there are still innovations to be made in the plate heat exchanger market where all the technologies become commonplace, will continue to be on the way with new works with its design team day by day.

Components

1	Bearing bars
2	Rods
3	Connection ports
4	Front body
5	Nuts and washers
6	Plates

Easy Repair & Maintenance

- Safety Stamp
- Counter Flanges

Rear body

- Stud Channels
- Fixing Feet

Compliance and Quality

- Test Tag on Body
- CE Label on Body
- Capacity

Hygienic Applications

- Complete Stainless Body
- Rubber Mouth That Wraps The Body
- Seals

Longer Service Life

- EPDM, EPDM-HT, NBR, H-NBR, VITON, VITON-G Gaskets
- AISI 304, AISI 316, Titanium, Hastelloy Plates

PLATE TYPES IN MIT PLATE HEAT EXCHANGERS

Standard Plates

Standart MIT plates are used in applications such as hot water supply, low pressure steam applications and space heating.

Special distribution channels, can be designed according to the needs of wide and narrow angle types, minimum pressure losses with the maximum efficiency of the special plate depth provides the right solution in such applications.

Wide Range Plates

In some embodiments, solid particles may be present in the fluid passing through the heat exchanger. For these applications, the wide range of plates are specially designed by the MIT team and the particles contained in the fluid can continue without sticking to the channels inside the heat exchanger and the contamination within the exchanger can be kept at minimum levels.

These plates, which are designed with wide gap, are also thicker than standard plates. In this way, the resistance to corrosive agents that are likely to be present in the flow is increasing. It is especially used in the textile industry to ensure optimum efficiency in waste water recovery.


Semi-Welded Plates

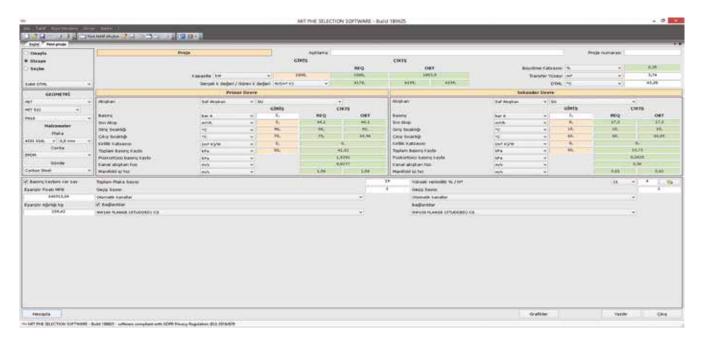
In some applications where aggressive fluids and high temperatures are present, seal life can be very short. Therefore, in these applications, it is recommended to use MIT semi-welded plates where two plates are welded to each other by laser welding instead of using seals on the side of the aggressive fluid. In the heat exchanger, the fluid on the other side passes through the sealing surface as in standard applications. In this way, your system is safe, but the heat exchanger can be easily maintained.

Double-Protection

MIT double-protection plates ensure that the system is completely safe when the two fluids used in the process should not be mixed. In these exchangers, the two plates are connected without welding and the fluid can flow freely between these two plates

In case of any leakage, the fluid leaks through the two plates without interfering with the other fluid and can be intervened in advance. Due to its similarity to the standard heat exchangers, it can be easily removed and cleaned.

Why Should I Use MIT Plate Heat Exchanger?


- It transfers heat with very high efficiency.
- Due to its compact structure, it occupies very little space.
- It can be completely disassembled and cleaned.
- Wide plate and gasket variety.
- Entirely manufactured in Turkey.
- Extensive service and dealership network.
- Launched by the main manufacturer.
- Always the most economical solution.

- It is designed by its experienced and solutionoriented engineers and offered to its customers.
- Quality certificates such as CE, ISO, EAC, TSE-HYB, BV.
- It is under Ekin guarantee for 2 years.
- It is delivered to you with the shortest delivery time.

MIT HEAT EXCHANGER SELECTION SOFTWARE

In the design of MIT plate heat exchangers, the MIT heat exchanger selection program developed as a result of long-term work of Ekin software team is used. With its user-friendly interface, automatic correction system, warnings for wrong selections,

smart control system which prevents wrong selections; It carries the title of being the first and only software on this field in Turkey.

General Conditions

- 1. Our company reassures its customers of providing 2 years warranty against manufacturing defects and 10 years of spare part supply.
- 2. Our plate heat exchangers have sealing gasket technology. Thus, the gaskets of our heat exchangers can be easily removed and cleaned during maintenance.
- 3. Our company reassures its customers of providing the documentations including the user manual and other specifications with their ordered plate heat exchanger.

After the design of the heat exchanger with MIT heat exchanger selection program, technical detail document can be obtained in desired format (PDF, EXCEL, TIFF, TEXT). In this way many conditions, such as the conditions under which it should work, the efficiency to be taken from the heat exchanger, the pressure losses in the heat exchanger and the dimensions of the heat exchanger, are provided in advance so that the installation can be prepared in advance.

Company: - PHE Type: 522		Date: - Engineer: -	
Heat Exchanger Features			
Capacity	1000,00	kW	
Model	MIT 522		
Total Number of Plates	19		
Plate Arrangement	4H + 15L		
Heat Transfer Area	3,74	m²	
Heat Exchanger Margin	0,35	%	
Actual k Value / Task k Value	6178 / 6199	W/(m ² K)	
LMTD	43,28	°C	
	Primary Circuit		Secondary Circuit
Fluid Type	Water		Water
Number of Transitions	1		1
Fluid Flow	44,1 m³/h		17,3 m³/h
Fluid Inlet Temperature	90,00 °C		10,00 °C
Fluid Outlet Temperature	70,00 °C		60,00 °C
Total Pressure Loss	41,52 kPa		10,73 kPa
Pressure Loss on Plates	39,98 kPa		10,48 kPa
Pressure Loss on Connections	1,55 kPa		0,25 kPa
Channel Fluid Speed	0,83 m/s		0,36 m/s
Connection Fluid Speed	1,561 m/s		0,613 m/s
Contamination Coefficient	0,0000003 (m ² K)/W		0,0000003 (m ² K)/W
Fluid Features	Primary Circuit		Secondary Circuit
Density	971,79 kg/m ³		994,03 kg/m³
Specific Heat	4197 J/(kg K)		4179 J/(kg K)
Thermal Conductivity	0,670 W/(m K)		0,623 W/(m K)
Viscosity	0,3543 cP		0,7193 cP
Material			
Plate Material		0,5 mm - AISI 316L	
Gasket Material		EPDM	
Body Material		Carbon Steel	
Connections			
Connections		M1 => M2	
Primary Circuit		NW100 Flange (STUDDED) CS	
Secondary Circuit		M3 => M4 NW100 Flange (STUDDED) CS	
Weight Empty / Full		239,42/257,11 kg	
Internal Volume Primary / Secondary		9/9	
Maximum Differential Pressure			
Difference		5 bar	
Design / Test Pressure		10/15 bar	
Min. / Max. Operating Temperature		-25/150 °C	
Price		-	

PROFESSIONAL PLATE HEAT EXCHANGER SERVICE

Ekin provides service for all brand and model heat exchangers as well as manufacturing MIT plate heat exchangers. The content of the professional service is determined and applied according to the need and it is ensured that your system complies with the performance of the first day.

Problems in Plate Heat Exchangers

- Performance degradation due to calcification.
- Obstruction due to sediment and dirt from the facility.
- Excessive pressure losses due to occlusion.
- Decrease in heat transfer due to occlusion.
- Wear of gaskets over time.
- Seals have lost their sealing properties.
- Corrosion and deformation of the plates.
- The body is deformed by internal and external factors.

When you encounter any of these problems mentioned in heat exchanger systems, all you have to do is to reach the professional service department of and enjoy the service you will receive.

Professional Service Package Contents

- Plate supply for each brand and model.
- Supply of seals for all brands and models.
- Revision and cleaning of heat exchanger bodies.
- Quick and detailed cleaning of the heat exchanger plates.
- Descaling of heat exchanger plates with special chemicals.
- Supply and manufacture of all types of nuts and bolts in heat exchangers.
- Delivery of the heat exchanger as it was on the first day.
- 24/7 continuous service.

BRAZED HEAT EXCHANGER

MIT BRAZED HEAT EXCHANGERS

MIT brazed heat exchangers are used in refrigeration units as evaporators, condensers, heating applications and instantaneous heaters and in their specific applications. MIT offers the most suitable solutions with a wide range of heat exchangers produced with high quality components.

Capacity and connections for specific applications can be produced as desired. MIT brazed heat exchangers save space thanks to their compact design.

CAPACITY CHART									
PHE Information	MIT MB-01	MIT MB-02	MIT MB-03	MIT MB-04	MIT MB-05	MIT MB-06	MIT MB-07		
Cooling Capacity / Heat Load (kW)	0.5-4	0.5-4	2-10	2-10	5-15	3-30	30-80		
Heat Transfer Area (m²)	(n-2)x0.012	(n-2)x0.012	(n-2)x0.014	(n-2)x0.022	(n-2)x0.028	(n-2)x0,030	(n-2)x0.120		
Design Temperature (°C)	-196-200	-196-200	-196-200	-196-200	-196-200	-196-200	-196-200		
Standard Design Pressure (bar)	30	10	30	30	30	30	30		
Height Design Pressure (bar)	30	40	45	45	45	45	40		
Test Pressure (bar)	15/45	15/60	45/65	45/65	45/65	45/65	45/65		
Distribution						Q	Q		
Double Cycle	D	D	D	D	D	D	D		
Channel Patterns	Н	H,L,M	Н	H,L,M	H,L,M	Н	Н		
Max. Number of Plates	50	60	60	60	150	150	250		
(Height/Width) (mm)	192/73	203/73	230/89	316/73	311/111	325/95	530/250		
Empty Weight (n=Number of Plates) (kg)	0.4+0.044xn	0.5+0.05xn	1.1+0.055xn	0.7+0.07xn	1.2+0.1xn	1+0.09xn	7+0.4xn		
Max. Brazed Connection Dimensions	7/8"	7/8"	1"	7/8"	1 3/8"	1 3/8"	1 5/8"		
Max. Threaded Connection Dimensions	3/4"	3/4"	1"	3/4"	1 1/4"	1 1/4"	2"		
Standard Plate Material	AISI316L								
Braze Material	Copper or Stainless								

	CAPACITY CHART								
PHE Information	MIT MB-08	MIT MB-09	MIT MB-10	MIT MB-11	MIT MB-12				
Cooling Capacity / Heat Load (kW)	10-60	30-200	60-200	150-450	150-500				
Heat Transfer Area (m ²)	(n-2)x0.052	(n-2)x0.095	(n-2)x0.113	(n-2)x0.21	(n-2)x0.26				
Design Temperature (°C)	-196-200	-196-200	-196-200	-196-200	-196-200				
Standard Design Pressure (bar)	30	30	30	30	25				
Height Design Pressure (bar)	45	45	40	40					
Test Pressure (bar)	45/67.5	45/67.5	45/60	45/60	45/60				
Distribution	Q	Q	Q	Q					
Double Cycle	D	D	D	D	D				
Channel Patterns	H,L,M	H,L,M	Н	Н	Н				
Max. Number of Plates	150	250	250	500	280				
(Height/Width) (mm)	527/111	617/190	490/250	739/322	798/363				
Empty Weight (n=Number of Plates) (kg)	1.8+0.23xn	4.6+0.44xn	6.5+0.42xn	13+0.82xn	13.5+0.97xn				
Max. Brazed Connection Dimensions	15/8"	21/8"	25/8"	31/8"	4"				
Max. Threaded Connection Dimensions	11/4"	2"	21/2"	31/8" Clamp	4" Clamp				
Standard Plate Material	AISI316L	AISI316L	AISI316L	AISI316L	AISI316L				
Braze Material	Copper or Stainless								

MIT brazed plate heat exchangers have been designed for cooling, ventilation and heating processes and have been used safely in these systems for years.

Information

Minimum temperature: -196 °C
Maximum temperature: +200 °C

• Design pressure: 30-70 bar

• Suitable for standard and high pressures

Cooling capacity

• Connection type: Threaded, brazed

• Copper, nickel and stainless

Certificates

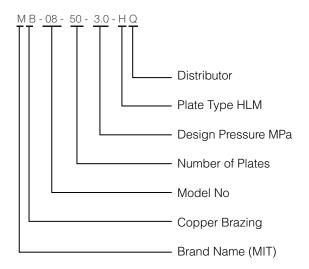
• CE Sertifikası (PED) 97/23/EC

• UL

• ISO 9001: 2000

BRAZED TYPE PLATE HEAT EXCHANGERS

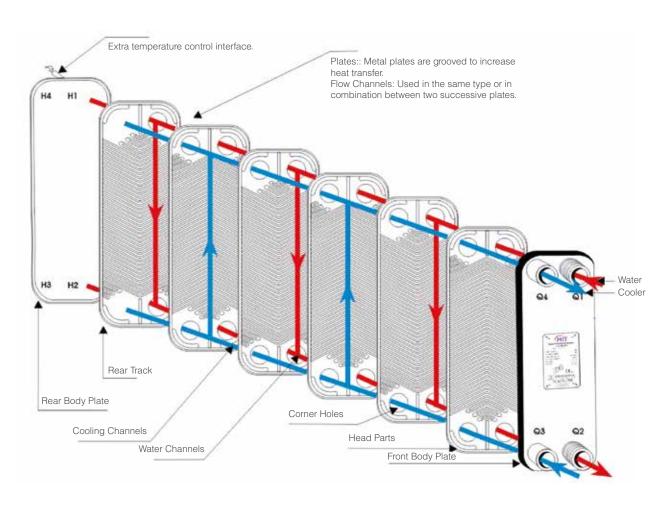
Model	MIT MB-01	MIT MB-02	MIT MB-03	MIT MB-04	MIT MB-05	MIT MB-06
Width (mm)	73	73	89	73	111	95
Height (mm)	192	203	230	316	311	325
Depth (mm)	9+2.3n	9+2.3n	9+2.3n	9+2.3n	9+2.3n	9+1.5n
Horizontal Axis Range (mm)	40	42	43	42	50	39
Vertical Axis Range (mm)	154	172	182	278	250	269
Max Operating Pressure (bar)	30	30	30	30	30	30
Test Pressure (bar)	45	45	45	45	45	45
Weight (kg)	0.4+0.044n	0.5+0.05n	1.1+0.055n	0.7+0.07n	1.2+0.1n	1+0.09n


Model	MIT MB-07	MIT MB-08	MIT MB-09	MIT MB-10	MIT MB-11	MIT MB-12
Width (mm)	250	111	190	250	322	363
Height (mm)	530	527	617	490	739	798
Depth (mm)	13+2,3n	9+2.34n	10+2.4n	7.6+2.3n	13+2.8n	13+2.8n
Horizontal Axis Range (mm)	174	50	98	138	188	188
Vertical Axis Range (mm)	456	456	515	378	603	608
Max Operating Pressure (bar)	30	30	30	30	30	30
Test Pressure (bar)	45	45	45	45	45	45
Weight (kg)	7+0.4n	1.8+0.23n	4.6+0.44n	6.5+0.42n	13+0.82n	13.5+0.97n

Model	Standard Connections	Optional Connections	Max. Threaded Connection Diameter	Max. Brazed Connection Diameter
MIT MB-01	Threaded	Brazed	3/4"	7/8"
MIT MB-02	Threaded	Brazed	3/4"	7/8"
MIT MB-03	Threaded	Brazed	3/4"	7/8"
MIT MB-04	Threaded	Brazed	3/4"	7/8"
MIT MB-05	Threaded	Brazed	1 1/4"	13/8"
MIT MB-06	Threaded	Brazed	1 1/4"	13/8"
MIT MB-07	Threaded	Brazed	2"	15/8"
MIT MB-08	Threaded	Brazed	1 1/2"	15/8"
MIT MB-09	Threaded	Brazed	2"	21/8"
MIT MB-10	Threaded	Brazed	2 1/2"	21/8"
MIT MB-11	Clamp	Brazed	3 1/8"	31/8"
MIT MB-12	Clamp	Brazed	4"	4"

Materials	
Plate Material	AISI 316
Connection Material	AISI 304
Braze Material	Copper (Standard) or Stainless

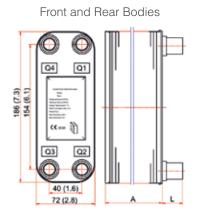
Display of Brazed Heat Exchangers

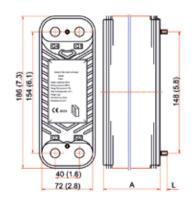

MIT brazed plate heat exchangers can be designed with channel plates with different heat transfer characteristics.

H-Type: The plate has wide-angle channels to make the heat transfer to turbulence the fluid's flow characteristic.

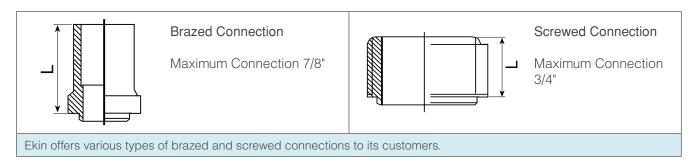
L-Type: Has narrow angles. This reduces the loss of pressure, but the reduction in turbulence reduces heat transfer.

M-Type: A combination of L and H type plates. These plates are particularly preferred when the heat exchange on one side of the plate heat exchanger is much larger than the other side.

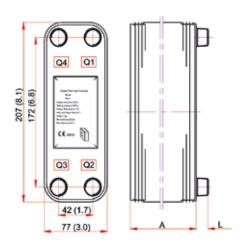

Structure of Plate Heat Exchanger



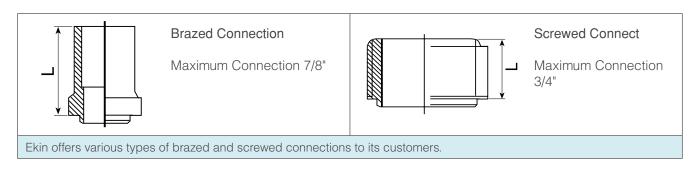
MIT MB-01 can be copper or nickel brazed heat exchanger. Plate material 316L.



Brazed Plate Heat Exchanger MIT MB-01						
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)		
n	7+2.3n	0.6+0.044n	0.018x1/2n / 0.018x1/2 (n-2)	(n-2) 0.012		

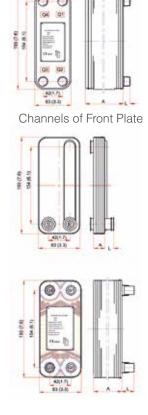

Parameters					
Design Pressure	30 bar				
Test Pressure	45 bar				
Design Temperature	-196 ~ +200 °C				
Plate Type	Н				
Heat Capacity	30 kW				
Maximum Number of Plates	100				

MIT MB-02 can be copper or nickel brazed heat exchanger. Plate material 316L.

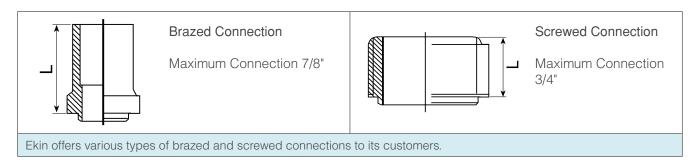


Parallel Flow

Brazed Plate Heat Exchanger MIT MB-02						
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)		
n	7+2.3n	0.7+0.06n	0.02x1/2n / 0.02x1/2 (n-2)	(n-2) 0.012		

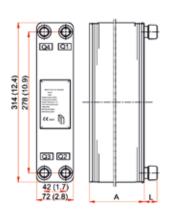

Parameters		
Design Pressure	30 bar	
Test Pressure	45 bar	
Design Temperature	-196 ~ +200 °C	
Plate Type	H. L. M.	
Heat Capacity	35 kW	
Maximum Number of Plates	110	

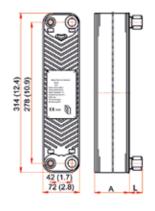
MIT MB-03 can be copper or nickel brazed heat exchanger. Plate material 316L.

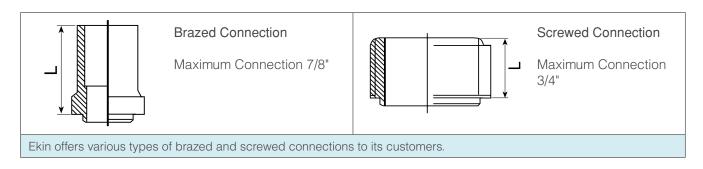

Customized

Cross Flow

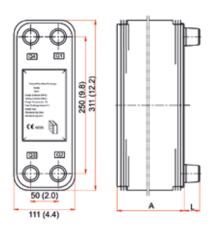
Brazed Plate Heat Exchanger MIT MB-03				
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)
n	7+2.3n	0.6+0.06n	0.022x1/2n / 0.022x1/2 (n-2)	(n-2) 0.014


Parameters		
Design Pressure	30 bar	
Test Pressure	45 bar	
Design Temperature	-196 ~ +200 °C	
Plate Type	Н	
Heat Load	40 kW	
Maximum Number of Plates	100	

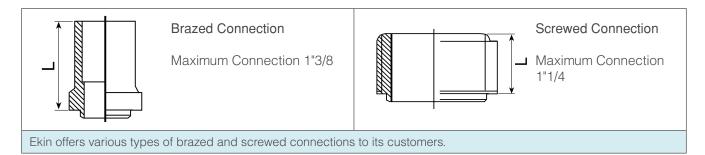




Brazed Plate Heat Exchanger MIT MB-04				
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)
n	7+2.3n	1.1+0.09n	0.04x1/2n / 0.04x1/2 (n-2)	(n-2) 0.022

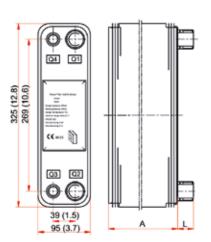

Parameters	
Design Pressure	30 bar
Test Pressure	45 bar
Design Temperature	-196 ~ +200 °C
Plate Type	H. L. M.
Heat Load	150 kW
Maximum Number of Plates	100

MIT MB-05 can be copper or nickel brazed heat exchanger. Plate material 316L.

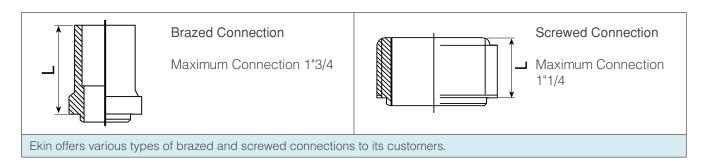


Parallel Flow

Brazed Plate Heat Exchanger MIT MB-05				
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m2)
n	9+2.5n	1.2+0.13n	0.05x1/2n / 0.05x1/2 (n-2)	(n-2) 0.028

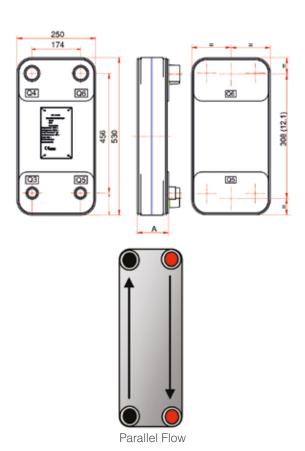

Parameters		
Design Pressure	30 bar (A type) 45 bar (B type)	
Test Pressure	45 bar (A type) 67,5 bar (B type)	
Design Temperature	-196 ~ +200 °C	
Plate Type	H. L. M.	
Heat Load	4-25 kW (in Air Heat Exchangers)	
Maximum Number of Plates	150	

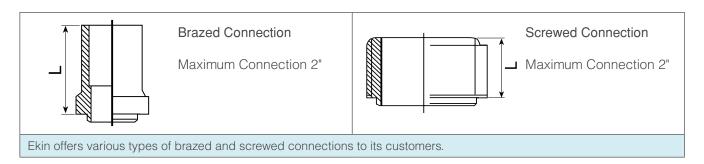
MIT MB-06 can be copper or nickel brazed heat exchanger. Plate material 316L.



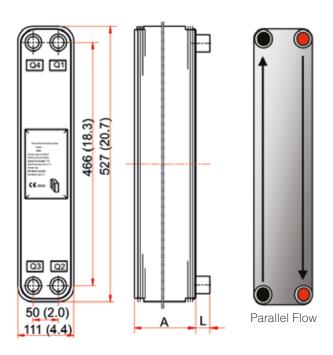
Parallel Flow

Brazed Plate Hea	t Exchanger MIT	MB-06		
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)
n	9+1.5n	1.0+0.09n	0.28x1/2n / 0.28x1/2 (n-2)	(n-2) 0.030

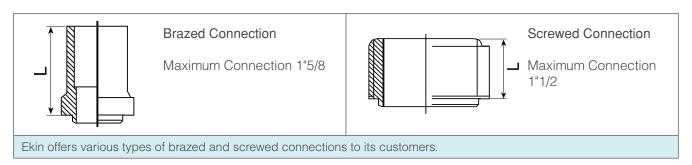

Parameters		
Design Pressure	30 bar (A type) 45 bar (B type)	
Test Pressure	45 bar (A type) 67,5 bar (B type)	
Design Temperature	-196 ~ +200 °C	
Plate Type	Н	
Heat Load	30-50 kW (in Air Heat Exchangers)	
Maximum Number of Plates	150	



MIT MB-07 can be copper or nickel brazed heat exchanger. Plate material 316L.

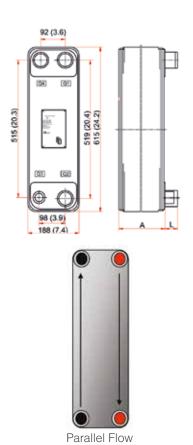

Brazed Plate Heat Exchanger MIT MB-07				
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)
n	13+2.3n	7+0.40n	0.094x1/2n / 0.094x1/4 (n-2)	(n-2) 0.120

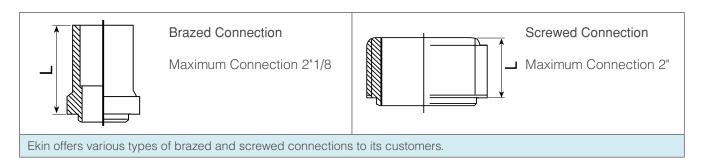
Parameters		
Design Pressure	30 bar (A type) 45 bar (B type)	
Test Pressure	45 bar (A type) 67,5 bar (B type)	
Design Temperature	-196 ~ +200 °C	
Plate Type	H. L. M.	
Heat Capacity	30-300 kW	
Maximum Number of Plates	250	



MIT MB-08 can be copper or nickel brazed heat exchanger. Plate material 316L.

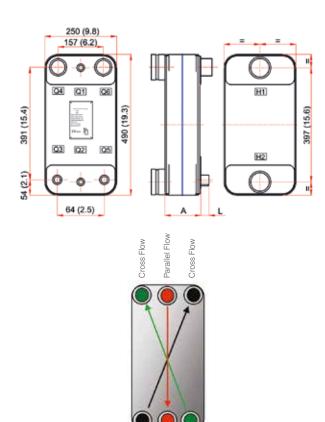
Brazed Plate Heat Exchanger MIT MB-08				
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)
n	9+2.4n	1.8+0.23n	0.094x1/2n / 0.094x1/2 (n-2)	(n-2) 0.050

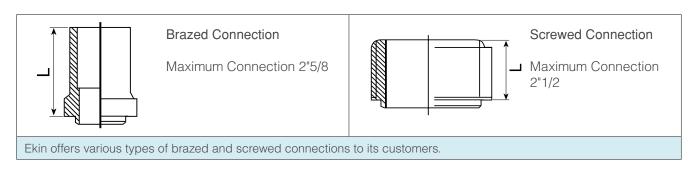

Parameters		
Design Pressure	30 bar (A type) 45 bar (B type)	
Test Pressure	45 bar (A type) 67,5 bar (B type)	
Design Temperature	-196 ~ +200 °C	
Plate Type	H. L. M.	
Heat Load	10-60 kW	
Maximum Number of Plates	150	



MIT MB-09 can be copper or nickel brazed heat exchanger. Plate material 316L.

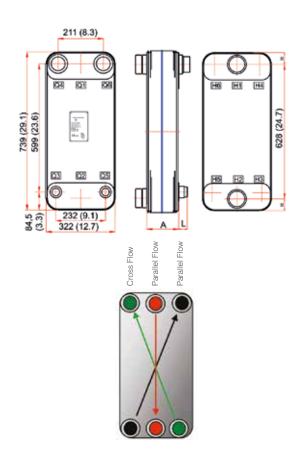
Brazed Plate Hea	t Exchanger MIT	MB-09		
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)
n	10+2.4n	4.6+0.41n	0.25x1/2n / 0.25x1/4 (n-2)	(n-2) 0.095

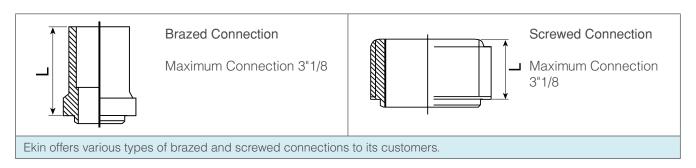

Parameters		
Design Pressure	30 bar (A type) 45 bar (B type)	
Test Pressure	45 bar (A type) 67,5 bar (B type)	
Design Temperature	-196 ~ +200 °C	
Plate Type	H. L. M.	
Heat Load	30-200 kW	
Maximum Number of Plates	200	



MIT MB-10 can be copper or nickel brazed heat exchanger. Plate material 316L.

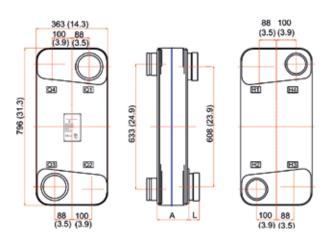
Brazed Plate Heat Exchanger MIT MB-10				
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)
n	7.6+2.3n	6.5+0.386n	0.16x1/2n / 0.16x1/4 (n-2)	(n-2) 0.113


Parameters	
Design Pressure	30 bar
Test Pressure	45 bar
Design Temperature	-198 ~ +200 °C
Plate Type	Н
Heat Load	60-200 kW
Maximum Number of Plates	198

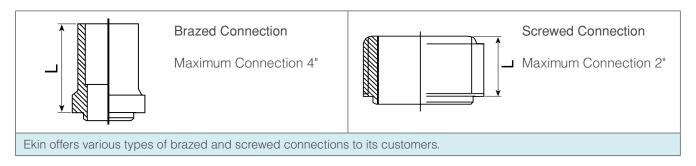


MIT MB-11 can be copper or nickel brazed heat exchanger. Plate material 316L.

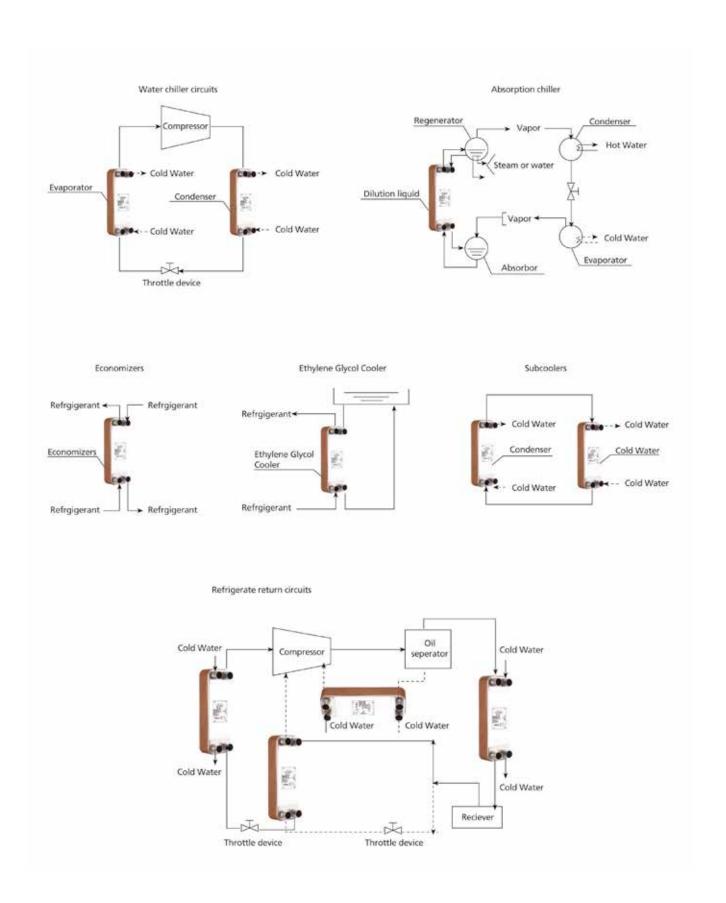
Brazed Plate Heat Exchanger MIT MB-11				
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m²)
n	13+2.8n	13+0.8n	0.4x1/2n / 0.4x1/4 (n-2)	(n-2) 0.210


Parameters	
Design Pressure	30 bar
Test Pressure	45 bar
Design Temperature	-198 ~ +200 °C
Plate Type	Н
Heat Load	150-450 kW
Maximum Number of Plates	250

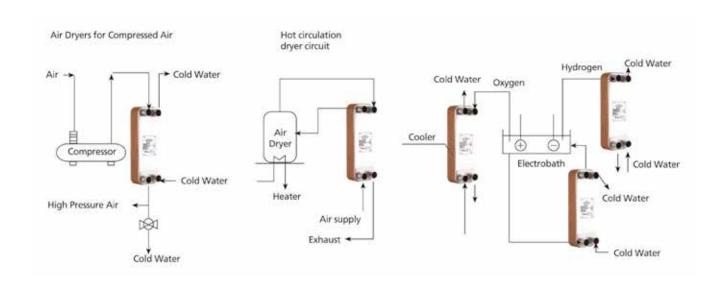
MIT MB-12 can be copper or nickel brazed heat exchanger. Plate material 316L.



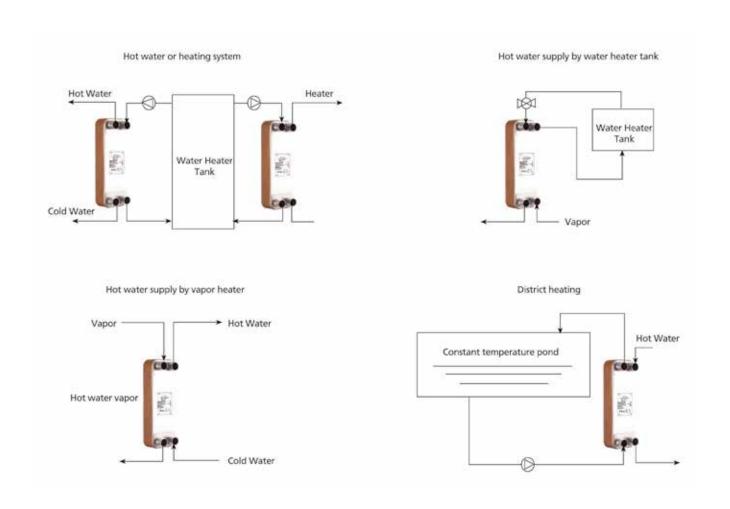
Cross Flow


Brazed Plate Hea	Brazed Plate Heat Exchanger MIT MB-12									
Number of Plates	A (mm)	Weight (kg)	Volume Q1 Q2 Side / Q3 Q4 Side	Heat Exchanger Area (m2)						
n	13+2.8n	13.5+0.97n	0.6x1/2n / 0.6x1/4 (n-2)	(n-2) 0.260						

Parameters	
Design Pressure	30 bar
Test Pressure	45 bar
Design Temperature	-196 ~ +200 °C
Plate Type	Н
Heat Load	150-450 kW
Maximum Number of Plates	250



COOLING



COOLING

HEATING

OIL COOLING APPLICATIONS

MIT MB Series Plate Heat Exchangers

Definition

The heat exchangers are installed between two fluids for heat exchange. Plate heat exchangers are high performance components with a light and compact structure combined with a high level of efficiency. Their efficiency reduces the amount of cooling water required for heat transfer, resulting in reduced operating costs.

Features

The plates and connections are made of stainless steel in accordance with AISI 316, vacuum welding with 1.4401 copper. Special design plates that provide turbulent flow required for effective heat transfer have high mechanical strength.

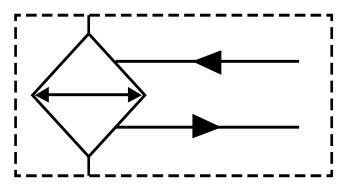
Operating Details

Media:

- Water Glycol (Coolant)
- Operation Fluid
- Water
- Oil

Contamination:

The number of solid particles should be less than 10 mg per liter. Particle size < 0.6 mm. (spherical) Fiber-like particles can cause rapid pressure drop.


Temperature range:

• -196 °C - 200 °C (Consider freezing point and boiling point.)

Pressure:

- Max. 257 °F (125 °C) with 49 psi (3 bar) (Static)
- Max. 435 °F (225 °C) with 435 psi (30 bar) (Static)
- Test Pressure: 650 psi

Hydraulic Symbol

Bypass option of AIB Cooling element for high viscosity applications.

Corrosion

At pH 7, refer to the following limits;

- chlorine-free, CL2 < 0.5 ppm
- chlorine ion. CL
 - < 700 ppm (at 20 °C)
 - < 200 ppm (at 50 °C)

Other Limits

- pH 7 10
- Sulfate SO4 2-< 100 ppm
- [H CO3 -] / [SO4 2 -] >1
- Ammonia, NH3 < 10 ppm

The following ions are not corrosive under normal conditions; Phosphate, nitrate, nitrite, iron, manganese, sodium and potassium.

Applications

Automotive

Industry

Pulp & Paper

Railway

Commercial

Energy

Shipbuilding

Steel Heavy Industry

TUBE HEAT EXCHANGER

TUBE HEAT EXCHANGERS

We design and manufacture products based on the project sent by our customers or according to customer requirements. Calculations, designs and projections according to customer demand and in accordance with **ASME Code Section VIII Div 1 and 2** (American Society Mechanical Engineers), **API 661, API 650** (American Petroleum Institute), **TEMA** (Tubular Exchanger Manufacturers Association), **AD-MERKBLAATTER, CODAT, DIN, EN 13445, PED 2014/68 / AB** and **TSE**.

If the standards are not specified, we use ASME VIII Div 1 for pressure vessels and TEMA for heat exchangers and API 661 for radiators. At the same time, it is ensured that project controls and productions are carried out according to these standards.

In our projects, materials suitable for international codes are selected and all kinds of carbon steel, stainless steel and special coated steels and alloy materials including high strength quenched steels are used successfully. The welds and controls are also carried out by our welders who are certified to international standards by SMAW, TIG, MAG-MIG sources according to ASME IV and EN.

Services

MIT pipe heat exchangers are used in the public and private sectors of iron and steel, machinery industry, petroleum, petrochemical, gas, power plants, food, pharmaceutical, health, paper industry, leather, textile, air conditioning, ship and marine industrial facilities. in military, construction, swimming pool, geothermal and contracting sectors, in the areas of heating and cooling.

- Shell and Tube Heat Exchangers
- Shell and Tube Standard Heat Exchangers
- Serpantines
- Radiators

- Batteries
- Economizers
- Ship Towers
- Maintenance & Repair



Products are designed according to customer requirements. Ekin designs its heat exchangers by means of licensed computer programs.

The software used by MIT pipe heat exchanger engineers provide equipment design according to different international standards.

All parts to be manufactured by MIT can be modeled in 3D in computer environment. The type of process required for machining of modeled parts in CNC vertical machining center, selection of tool paths, process sequence etc. are programmed in computer environment. With computerized simulation of complex parts, possible errors can be detected before being processed on the machine.

Due to the sectors we serve, every material we use in our manufacturing should be of the highest quality.

Today, many materials are frequently used in heat exchangers and pressure vessels, such as;

- ASME SA516 Gr 70
- ASME SA106 Gr B
- ASME SA105
- ASME SA387
- ASME SA179

- ASME SA213
- CuZn28Pb1
- P265
- P335
- ASME SA266

- ASME SA182
- St35.8
- Duplex
- Super Duplex
- Monel

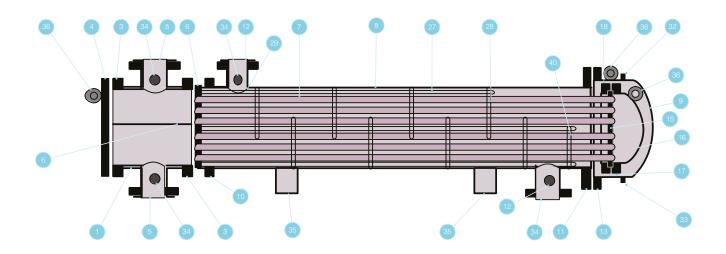
are still imported from abroad.

Our company realizes the importation of materials from many countries from Europe to the Far East according to the need. All materials used in our workshop are used in accordance with EN 10204 3.1 and / or ASME standards and, if necessary, are checked by neutral inspection organizations and used as original certified. Input quality control reports are prepared for each material used in our projects.

Different tests can be applied according to the necessity of manufacturing in our workshop. While some of these tests are carried out by MIT quality control engineers, some of them can be done by neutral control organizations.

In our workshop, quality file is produced for every equipment manufactured. Regarding the produced equipments; manufacturing program, mechanical design reports, manufacturing technical drawings, quality-control plan, NDT test reports, material certificates, dimension-size control reports, material input quality control reports, welding process specifications (WPS), welding test reports (PQR), welder certificates (WPQ), compliance reports etc. are presented to our customers in a transparent manner.

The ID files of the equipment and the quality files are prepared and shared with each customer.



SHELL & TUBE HEAT EXCHANGERS

It is the most widely used heat exchanger in industrial facilities such as iron and steel, petroleum, petrochemical, gas, power plants, food, pharmaceuticals, leather, textiles, air conditioning, ships and maritime sectors.

The heat exchangers used in the industries can be used in all sectors where there is a second alternative energy requirement from an alternative energy.

Shell & Tube Heat Exchanger Components;

1	Fixed Head-Channel	9	Body Cover	17	Floating Head Flange	25	Packing Seal Ring	33	Unloading Connection
2	Fixed Head-Nozzle	10	Body Flange-Fixed Front Side	18	Floating Head Rear Assembly	26	Flashlight Ring	34	Measuring Instrument Connection
3	Fixed Head, Flanged Channel	11	Body Flange - Rear Side	19	Segment	27	Connecting Rods and Gaps	35	Support
4	Channel Cover	12	Body Inlet	20	Rear Flange	28	Suppression or Support Plates	36	Lifting Ring
5	Fixed Head Inlet	13	Body Cover Flange	21	Floating Head Cover	29	Inlet Surge Board (Curtain)	37	Support
6	Fixed Tube Mirror	14	Expansion Connection	22	Floating Tube Mirror Shirt	30	Longitudinal Surveillance Plate (Curtain)	38	Sluice
7	Tubes	15	Floating Tube Miror	23	Seal Box Flange	31	Chamber	39	Liquid Level Connection
8	Body	16	Floating Head Cover	24	Seal	32	Airing Connection		

Advantages of Shell & Tube Heat Exchangers;

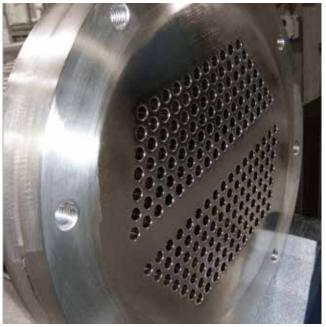
- They can be designed and manufactured to operate at very high pressures.
- Highly flexible and robust design.
- They can be designed and manufactured to operate at very high and very low temperatures.
- They are resistant to thermal shocks.
- There is no size limitation.
- They can be used in all applications.
- Pressure losses are minimal and can be kept to a minimum in accordance with the process purpose.
- They can be easily dismantled and reassembled for maintenance, repair and cleaning.
- Maintenance and repairs are easy.
- Pipe diameter, pipe number, pipe length, pipe pitch and pipe arrangement can be changed. Therefore, the design of tube heat exchangers has a lot of flexibility.

SHELL & TUBE CUSTOMIZED HEAT EXCHANGERS

Heat transfer applications often require different solutions for different processes. After obtaining the necessary information in the process, it is designed by the expert engineers in the field and the schematic drawing is extracted. After the schematic drawing is checked, there is no dimensional problem and production pictures are taken.

Each heat exchanger approved for production is a process-specific heat exchanger, which is usually designed and which is similar. After the heat exchangers are manufactured, it is possible to isolate the heat losses to the minimum by isolating them if desired. There is no capacity limit in the production of pipe heat exchangers. Heat exchangers can be grouped in multiple ways by connecting in series or parallel and their capacities can be increased. Ekin, which provides the provision of facilities that require high capacities such as Petrochemical Plants and Power Plants, is one of the leading companies in the sector with its experience in this field.

Customized and Hygienic Heat Exchangers


In some food and chemistry applications, heat treatments are carried out at very high temperatures or pressures. The use of plate heat exchangers at the mentioned temperatures and pressures is not used because the gasket temperature and pressure resistance is exceeded. For such applications, MIT engineers have developed a complete, hygienic tube heat exchangers. The temperature limit for these tube heat exchangers can be up to 350 °C. The welds in this type of heat exchanger must be made very precisely to ensure a smooth flow surface.

At the MIT production facility, such resources are implemented by certified welders and are examined by expert engineers in a 3-stage quality control phase. MIT engineers, who are experts on food processing processes, offer the most appropriate solutions during design, taking into account the capacity, location, type of food to be processed.

In high-pressure applications, as well as capacity calculations, material thicknesses are of vital importance in terms of welding technologies. Therefore, every heat exchanger produced at Ekin is kept under test for 1.5 hours at a pressure of 1.5 times the normal working pressure and is shipped if there is no problem in the test.

Tube in Tube Heat Exchangers

Usually used in food and sludge processes. The materials used are stainless in weight. In the case of chemical mixture in the sludge processes, material analysis is performed and material selection is made.

Double Tube Heat Exchangers

The preferred type of product for safety reasons is the double tube safe heat exchangers where the fluids are mixed with each other.

A possible leakage is reported by means of an electrical signal through a pressure switch or a float in the control chamber.

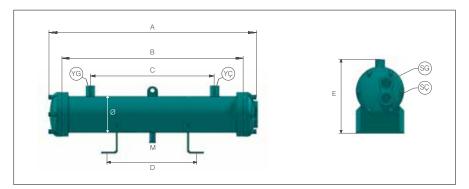
The double walled safety tubes in the tube bundle are heat transfer tubes with thin channels that create a leakage space after the two tubes are connected.

In addition to oil cooling systems, the transformer is also used in chemical process engineering, heat recovery, food processes and domestic hot water heaters.

Copper and copper alloys are generally preferred in the products, and carbon steel and stainless steel materials are used according to the processes.

Depending on the application and processing requirements, special designs are selected on the inner or outer pipe to ensure the best heat transfer and processing.

SHELL & TUBE STANDARD HEAT EXCHANGERS


Oil Coolers

Many machines used in the industry need cooling during their work. The cooling process is usually caused by the collision of the water from the cooling tower or the chiller in the heat exchanger by the machine. MIT oil coolers can be used in all types of applications. Oil coolers can be manufactured as standard in certain dimensions and can be manufactured in special manufacturing processes.

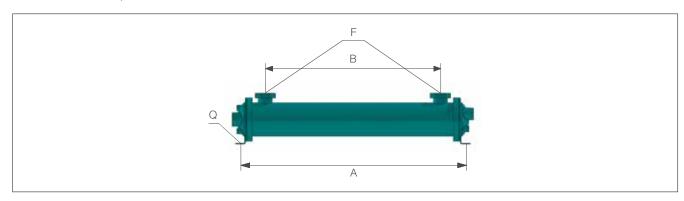
Grooved Copper Tube Oil Heat Exchangers

In MIT oil coolers, internal pipes can be manufactured from grooved copper pipes and turbulent flow can be provided. In this way, heat transfer is much higher than standard flat tube heat exchangers. In standard products, the inner tubes are made of copper and the quality of all other equipments are manufactured as ST35.8.

	Capacity	Α	В	С	D	Е	М	Ø	YG-YÇ	SG-SÇ	Weight
Model	(Kcal/h)	(mm)	(mm)	(mm)	(mm)	(mm)	(inch)	(mm)	(inch)	(inch)	(kg)
MIT.BYS.14.50	18100	590	500	340	340	252	G 1/2"	140	G 1"	G 1"	29
MIT.BYS.14.75	26400	840	750	550	500	252	G 1/2"	140	G 1"	G 1"	32,5
MIT.BYS.14.100	36300	1090	1000	800	650	252	G 1/2"	140	G 1"	G 1"	42
MIT.BYS.14.125	44500	1345	1250	1050	800	252	G 1/2"	140	G 1"	G 1"	45
MIT.BYS.16.50	21400	592	500	340	340	280	G 1/2"	168	G 1"	G 1"	32
MIT.BYS.16.75	34600	842	750	550	500	280	G 1/2"	168	G 1"	G 1"	40
MIT.BYS.16.100	44500	1092	1000	800	650	280	G 1/2"	168	G 1"	G 1"	49
MIT.BYS.16.125	56100	1342	1250	1050	800	298	G 1/2"	168	G 1"	G 1"	57
MIT.BYS.16.150	67600	1592	1500	1300	1000	292	G 1/2"	168	G 1"	G 1"	66
MIT.BYS.22.75	52800	850	750	550	500	349	G 1/2"	220	G 2"	G 2"	66
MIT.BYS.22.100	70900	1100	1000	800	650	349	G 1/2"	220	G 2"	G 2"	77,5
MIT.BYS.22.125	89100	1344	1250	1050	800	349	G 1/2"	220	G 2"	G 2"	89
MIT.BYS.22.150	107000	1594	1500	1300	1000	349	G 1/2"	220	G 2"	G 2"	100
MIT.BYS.22.175	125000	1844	1750	1550	1150	349	G 1/2"	220	G 2"	G 2"	111
MIT.BYS.22.200	143000	2094	2000	1780	1250	349	G 1/2"	220	G 2"	G 2"	123
MIT.BYS.22.250	179000	2594	2500	2280	1450	349	G 1/2"	220	G 2"	G 2"	146
MIT.BYS.25.75	92400	850	750	550	500	423	G 1/2"	273	G 2"	G 2"	89
MIT.BYS.25.100	123000	1100	1000	800	700	423	G 1/2"	273	G 2"	G 2"	128
MIT.BYS.25.125	165000	1350	1250	1050	800	423	G 1/2"	273	G 2"	G 2"	145
MIT.BYS.25.150	186000	1600	1500	1300	1000	423	G 1/2"	273	G 2"	G 2"	162
MIT.BYS.25.175	217000	1850	1750	1550	1150	423	G 1/2"	273	G 2"	G 2"	180
MIT.BYS.25.200	247000	2100	2000	1780	1250	423	G 1/2"	273	G 2"	G 2"	197
MIT.BYS.25.250	310000	2600	2500	2280	1450	423	G 1/2"	273	G 2"	G 2"	230
MIT.BYS.25.300	371000	3100	3000	2760	1700	423	G 1/2"	273	G 2"	G 2"	263

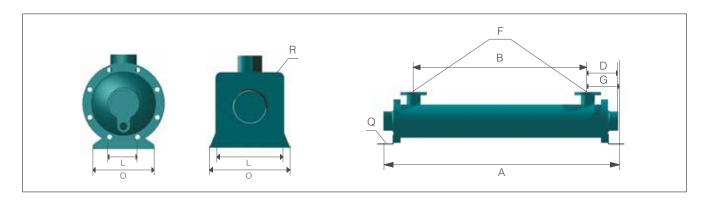
Lamelled Tubular Heat Exchangers

The heat exchangers with flap heating surfaces, which are called laminated pipe heat exchangers, significantly increase the heat transfer between gases and liquids, saving space and are more efficient than flat pipes.

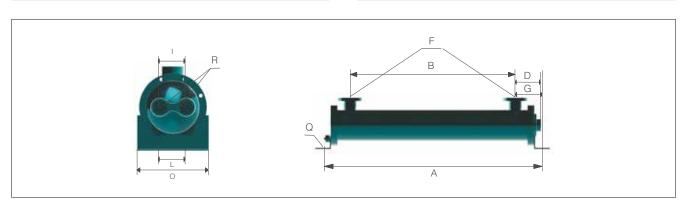

MIT laminated pipe heat exchanger is used in many different applications in industry. It allows heat transfer up to 1000 kW capacity.

Advantages

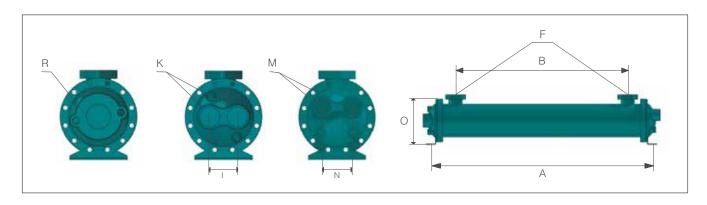
- Heat transfer surface between 0.43 m² and 56 m².
- Corrosion resistant, aluminum lamellae that increase the heat transfer area.
- Heat transfer up to 1000 kW.



- 1500 liter / minute oil flow rate.
- Detachable cap and pipe bundle make it possible to clean the heat exchanger.
- 35 bar oil, 10 bar water resistant product range.


Model	А	В	F	Q	m²	Weight (kg)
MFYS-505	189	55	G 3/4"	Ø 9 x 16	0,43	3,15
MFYS-508	265	97	G 3/4"	Ø 9 x 16	0,73	3,60
MFYS-510	316	148	G 3/4"	Ø 9 x 16	0,94	3,45
MFYS-512	367	199	G 3/4"	Ø 9 x 16	1,13	4,05
MFYS-514	418	250	G 3/4"	Ø 9 x 16	1,43	4,50
MFYS-518	519	351	G 3/4"	Ø 9 x 16	1,74	5,10
MFYS-524	672	504	G 3/4"	Ø 9 x 16	2,35	6,00
MFYS-536	976	808	G 3/4"	Ø 9 x 16	3,57	7,80
MFYS-708	283	76	G 11/2"	Ø 11 x 19	1,38	7,30
MFYS-712	385	178	G 11/2"	Ø 11 x 19	2,18	8,40
MFYS-714	436	229	G 11/2"	Ø 11 x 19	2,53	8,80
MFYS-718	537	330	G 11/2"	Ø 11 x 19	3,29	10,20
MFYS-724	690	483	G 11/2"	Ø 11 x 19	4,44	11,60
MFYS-736	976	787	G 11/2"	Ø 11 x 19	6,73	15,50
MFYS-1012	397	157	G 11/2"	Ø 11 x 25	4,38	15,40
MFYS-1014	448	208	G 11/2"	Ø 11 x 25	5,17	16,90
MFYS-1018	549	309	G 11/2"	Ø 11 x 25	6,73	19,80
MFYS-1024	702	462	G 11/2"	Ø 11 x 25	9,06	21,80
MFYS-1036	1006	766	G 11/2"	Ø 11 x 25	13,74	30,50
MFYS-1048	1307	1067	G 11/2"	Ø 11 x 25	18,41	39,80

Model	D	R	G	L	0
MFYS-505-O	66	G 3/4"	66	63,5	89
MFYS-508-O	82	G 3/4"	83	63,5	89
MFYS-510-O	82	G 3/4"	83	63,5	89
MFYS-512-0	82	G 3/4"	83	63,5	89
MFYS-514-0	82	G 3/4"	83	63,5	89
MFYS-518-0	82	G 3/4"	83	63,5	89
MFYS-524-0	82	G 3/4"	83	63,5	89
MFYS-536-O	82	G 3/4"	83	63,5	89
MFYS-708-O	103	G 1 1/4"	103	76	127
MFYS-712-0	103	G 1 1/4"	103	76	127


Model	D	R	G	L	0
MFYS-714-O	103	G 1 1/4"	103	76	127
MFYS-718-O	103	G 1 1/4"	103	76	127
MFYS-724-O	103	G 1 1/4"	103	76	127
MFYS-736-O	103	G 1 1/4"	103	76	127
MFYS-1012-O	116	G 1 1/2"	116	102	165
MFYS-1014-O	116	G 1 1/2"	116	102	165
MFYS-1018-O	116	G 1 1/2"	116	102	165
MFYS-1024-O	116	G 1 1/2"	116	102	165
MFYS-1036-O	116	G 1 1/2"	116	102	165
MFYS-1048-O	116	G 1 1/2"	116	102	165

Model	D	R	G	L	0	- 1
MFYS-505-T	83	G 3/8"	67	63,5	89	28
MFYS-508-T	83	G 3/8"	85	63,5	89	28
MFYS-510-T	83	G 3/8"	85	63,5	89	28
MFYS-512-T	83	G 3/8"	85	63,5	89	28
MFYS-514-T	83	G 3/8"	85	63,5	89	28
MFYS-518-T	83	G 3/8"	85	63,5	89	28
MFYS-524-T	83	G 3/8"	85	63,5	89	28
MFYS-536-T	83	G 3/8"	85	63,5	89	28
MFYS-708-T	91	G 1"	95	76	127	41
MFYS-712-T	91	G 1"	95	76	127	41

Model	D	R	G	L	0	1
MFYS-714-T	91	G 1"	95	76	127	41
MFYS-718-T	91	G 1"	95	76	127	41
MFYS-724-T	91	G 1"	95	76	127	41
MFYS-736-T	91	G 1"	95	76	127	41
MFYS-1012-T	113	G 1 1/4"	110	102	165	60
MFYS-1014-T	113	G 1 1/4"	110	102	165	60
MFYS-1018-T	113	G 1 1/4"	110	102	165	60
MFYS-1024-T	113	G 1 1/4"	110	102	165	60
MFYS-1036-T	113	G 1 1/4"	110	102	165	60
MFYS-1048-T	113	G 1 1/4"	110	102	165	60

Model	А	В	F	R	I	K	М	N	0	m²
MFYS-1218-T	526	250	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	9,28
MFYS-1224-T	678	402	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	12,57
MFYS-1230-T	831	555	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	15,86
MFYS-1236-T	983	707	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	19,05
MFYS-1242-T	1136	860	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	22,36
MFYS-1248-T	1288	1012	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	25,53
MFYS-1254-T	1440	1164	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	28,82
MFYS-1260-T	1593	1317	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	32,01
MFYS-1266-T	1745	1469	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	35,30
MFYS-1272-T	1897	1621	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	38,49
MFYS-1278-T	2050	1774	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	41,78
MFYS-1284-T	2202	1966	SAE 2 1/2"	G 2"	87+80	G 2"	G 1"	70	190	45,05

Model	Α	В	F	R	I	K	M	N	0	m²
MFYS-1724	706	368	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	14,77
MFYS-1730	859	521	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	18,85
MFYS-1736	1011	673	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	22,65
MFYS-1742	1164	826	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	26,70
MFYS-1748	1316	978	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	30,52
MFYS-1754	1468	1130	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	34,55
MFYS-1760	1621	1283	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	38,40
MFYS-1766	1773	1435	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	42,25
MFYS-1772	1925	1587	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	46,28
MFYS-1778	2078	1740	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	50,12
MFYS-1784	2230	1932	SAE 3"	G 3"	100	G 2 1/2"	G 2"	108	210	54,15

Stainless and Titanium Pool Heat Exchangers

MIT tubular pool heat exchangers can be used in a wide range of systems such as solar pool heating systems or pool heating systems.

MIT pool heat exchangers ensure long life for all system components. Chlorine and its salt play an important role for the continuity of the systems by preventing the contact with the solar system or boiler directly.

MIT pool heat exchangers have been designed by Ekin engineers in an innovative way and their spiral and twisted design has increased the heat transfer efficiency to a high level. This also increases the thermal efficiency in the system.

MIT pool heat exchangers are designed to offer you the best solution with a wide range of capacities. These exchangers are perfect for pool, spa and similar applications.

Features

- High heat transfer efficiency.
- Soft and smooth tubes provide fast flow.
- Compact and advanced design.
- Wide range of usages.
- Different and large capacity sizes.

MIT pool heat exchangers are constructed from fully pressurized outer shell and threaded tubular inner tubes. Thus, the high flow rate within the heat exchanger is achieved, the heat exchanger is intended to be more durable, more efficient and cost effective.

The pool heat exchangers of Ekin have a large capacity to operate from a small spa to olympic pools. MIT pool heat exchangers from 15 kW up to 1750 kW provide the most appropriate and economical solution.

Advantages

- High efficiency coefficient 10000 W / m² °C, 5 or 6 times more efficiency than conventional heat exchangers.
- Compact design is 1/10 according to traditional products.
- Stainless steel and / or titanium material provides durability in corrosion and pressure factors.
- The connection design of the heat exchanger destroys the pressure on it.
- Compliance with ASME Standards VIII-1.
- Compact design.
- Easy installation and durability.

The MIT pool heat exchanger body and tubes are designed to operate at 205 °C and 1.3 MPa pressure. Body AISI 316L or titanium and tubes & connections can be selected from AISI 316L or titanium materials, depending on working conditions and chlorine content.

Model	Normal Capacity		Body Diameter	Body Lenght	Heat Transfer		mming Capacity	Body (Pool)	Tube (Hot) Inlet-Outlet	
	kW	kBtu/Hr	(mm)	(mm)	Area (m²)	m³	USGAL	Inlet-Outlet Connection	Connection	
MIT-MS-16	16	55	60	360	0,15	18	4700	1"	3\4"	
MIT-MS-25	25	85	60	520	0,25	28	7300	1"	3\4"	
MIT-MS-45	45	155	76	450	0,33	50	13300	1 1\2"	1"	
MIT-MS-61	61	210	76	570	0,44	68	18000	1 1\2"	1 1\2"	
MIT-MS-88	88	300	76	780	0,64	98	25800	2"	1 1\2"	
MIT-MT-105	105	360	89	830	0,85	120	31500	2"	1 1\2"	
MIT-MS-175	175	600	114	900	1,55	200	52500	2 1/2"	2"	
MIT-MS-352	352	1200	133	900	2,01	400	105600	2 1/2"	2"	
MIT-MS-704	704	2400	168	950	4,47	800	211200	4"	2"	
MIT-MS-880	880	3000	168	1100	5,3	1000	264000	4"	2 1\2"	
MIT-MS-1056	1056	3600	168	1300	6,42	1200	316800	4"	2 1\2"	
MIT-MS-1320	1320	4500	219	1070	8,46	1500	396000	4"	2 1\2"	
MIT-MS-1467	1467	5000	219	1120	8,87	1660	439000	4"	2 1\2"	
MIT-MS-1760	1760	6000	219	1220	10,64	2000	526800	4"	2 1\2"	

All of our pool heat exchangers are manufactured as AISI 316 or AISI 316Ti stainless steel.

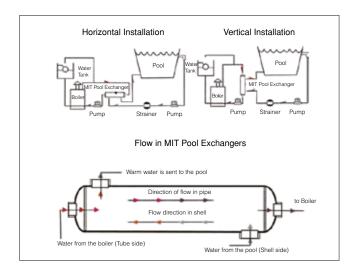
Working Principle of MIT Tube Pool Heat Exchangers

MIT pool heat exchangers perform the heating / cooling process from the boiler / chiller by transferring water from the pool. The MIT pool heat exchangers prevent the passage of chlorine or any chemicals from the pool to the system, keeping the system and pool separate.

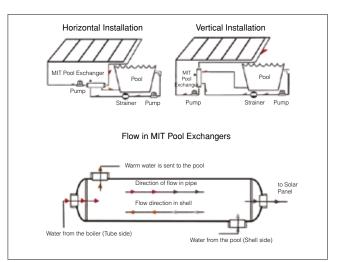
MIT pool heat exchangers ensure that the pool is healthy and long-lasting by keeping the materials that will harm the system. MIT pool heat exchangers are designed according to the size of the boiler or the size of the pool and the system to be used. The pool water with low temperatures allows the pool to heat evenly from the central boiler. MIT pool heat exchangers can be used in solar systems as well as boiler systems.

Housing Applications

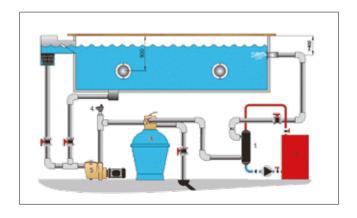
- Floor Heating
- Pools
- Spas
- Domestic Water
- Solar Heating


Industrial Applications

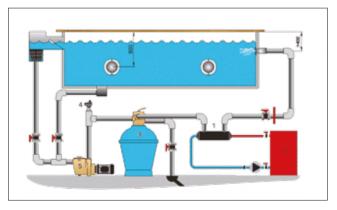
- Oil Cooling
- Steam Condense
- Central Heating
- Motor Cooling
- Waste Water Heat Recovery


The MIT pool heat exchangers transfer heat from the heat source to the heat source by providing heat transfer with the cold water in the pond.

Boiler Pool Heating System



Solar Pool Heating System



Vertical Pool Heat Exchanger Model

Horizontal Pool Heat Exchanger Model

1	Tubular Pool Exchanger	3	Strainer	5	Pump
2	Boiler	4	Thermostate		

Shell & Tube Evaporators

BE Tubular Type Evaporators

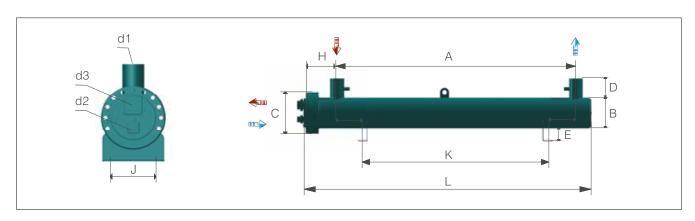
BE type evaporators have basic capacity and geometry options up to 1500 kW. They can be manufactured with 4 cooling circuits.

Appropriate refrigerants are all HFC and HCFCs. Special reverse flow and high heat transfer efficient evaporators are manufactured for R134A gas.

Disassembly of the pipe bundle ensures maintenance and cleaning. Please contact us for special order products out of catalog.

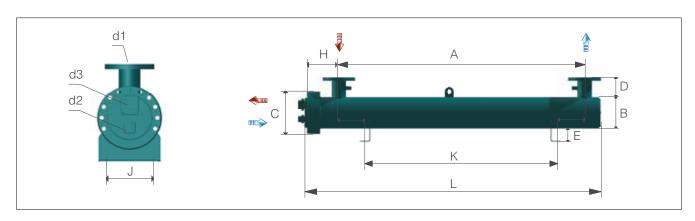
Usage Areas of Tubular Evaporators

- Cooling Groups
- Ice Machines
- Marine Industry
- Ice Rinks



MIT-BE Single Circuit Evaporators

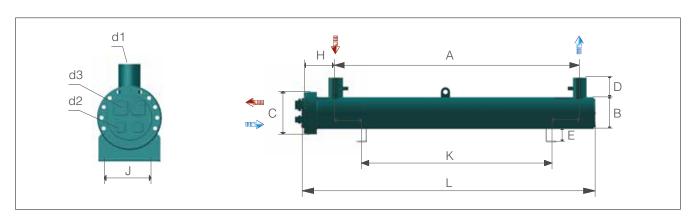
			20	30	40	50	60	70	80	100	135	145
Conneity	0	kW	21	32	42	50	61	74	86	104	135	144
Capacity	Q_{W}	Tons (RT)	6,0	9,1	12,0	14,2	17,4	21,1	24,5	29,6	38,5	41,0
Mass Flow	WN	m³/h	4	5	8	9	11	13	15	18	22	25
Pressure Loss	Δρ	kPa	16	20	45	48	41	48	61	64	49	54
Refrigerant Fluid Volume	L		3,8	4,5	5,4	6,1	7,9	8,9	10,3	11,2	15,3	17,8
Water Volume	L		5,9	7,1	8,7	10,0	14,5	16,2	18,5	20,4	27,4	31,7


		20	30	40	50	60	70	80	100	135	145
	L	865	1015	1215	1375	1285	1435	1635	1785	1830	2110
	А	660	810	1000	1160	1050	1200	1385	1535	1555	1835
	В	140	140	140	140	168	168	168	168	194	194
	С	195	195	195	195	245	245	245	245	260	260
	D	120	120	120	120	120	120	120	120	120	120
Cizos (mm)	Е	80	80	80	80	80	80	80	80	80	80
Sizes (mm)	Н	160	160	160	160	170	170	170	170	195	195
	J	117	117	117	117	147	147	147	147	180	180
	К	550	700	900	1060	910	1060	1260	1410	1200	1500
	d1	G 1 1/2	G 1 1/2	G 2	G 2	G 2 1/2	G 2 1/2	G 2 1/2	G 2 1/2	G 3	G 3
	d2	FL 22	FL 22	FL 22	FL 22	FL 22	FL 22	FL 22	FL 22	FL 35	FL 35
	d3	FL 35	FL 35	FL 35	FL 35	FL 42	FL 42	FL 42	FL 42	FL 54	FL 54
Weight	kg	40	43	49	53	69	74	81	85	112	125

	Water Inlet Temperature	12 °C	EvaporationTemperature (DEW)	2,75 °C
R407C	Water Outlet Temperature	7 °C	Condensation Temperature	45 °C
	Contamination Coefficient	0,000043 m ² K/W	Extreme Temperature	4 K

MIT-BE Single Circuit Evaporators

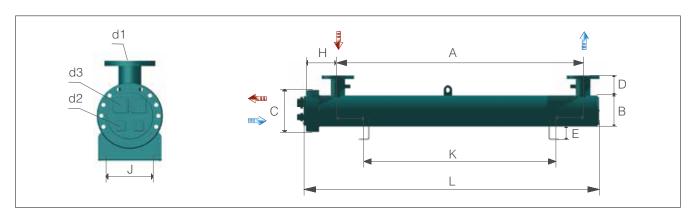
			165	205	245	290	340	390	450	500	590
Conneity	0	kW	162	202	242	295	345	395	450	515	585
Capacity	Q_{W}	Tons (RT)	46,2	57,5	68,9	84,0	98,3	112,5	128,2	146,7	166,7
Mass Flow	WN	m³/h	28	35	42	50	59	68	77	88	99
Pressure Loss	Δρ	kPa	53	35	54	28	50	34	36	39	54
Refrigerant Fluid Volume		L	19,7	26,5	30,0	36,9	41,7	47,8	56,5	64,3	72,8
Water Volume		L	34,7	47,5	53,6	98,5	93,0	85,9	139,8	130,8	121,0


		165	205	245	290	340	390	450	500	590
	L	2310	2340	2640	2670	2670	2670	2720	2720	2720
	А	2035	2000	2300	2270	2270	2270	2270	2270	2270
	В	194	219	219	273	273	273	324	324	324
	С	260	300	300	350	350	350	420	420	420
	D	120	150	150	150	150	150	150	150	150
Cizoo (mm)	Е	80	80	80	100	100	100	100	100	100
Sizes (mm)	Н	195	225	225	255	255	255	285	285	285
	J	180	200	200	245	245	245	280	280	280
	К	1700	1800	2100	2100	2100	2100	2100	2100	2100
	d1	G 3	DN 100	DN 100	DN 125	DN 125	DN 125	DN 150	DN 150	DN 150
	d2	FL 35	FL 35	FL 35	FL 42					
	d3	FL 54	FL 80							
Weight	kg	134	167	176	230	237	245	308	320	337

	Water Inlet Temperature	12 °C	EvaporationTemperature (DEW)	2,75 °C
R407C	Water Outlet Temperature	7 °C	Condensation Temperature	45 °C
	Contamination Coefficient	0,000043 m ² K/W	Extreme Temperature	4 K

MIT-BED Double Circuit Evaporators

			20	30	40	50	60	70	80	100	135	145	165	205	245
Conneity	0	kW	21	32	42	50	61	74	86	104	135	144	162	202	242
Capacity	Q_{W}	Tons (RT)	6,0	9,1	12,0	14,2	17,4	21,1	24,5	29,6	38,5	41,0	46,2	57,5	68,9
Mass Flow	WN	m³/h	4	5	8	9	11	13	15	18	22	25	28	35	42
Pressure Loss	Δρ	kPa	16	20	45	48	41	48	61	64	49	54	53	35	54
Refrigerant Fluid Volume	L		3,8	4,5	5,4	6,1	7,9	8,9	10,3	11,2	15,3	17,8	19,7	26,5	30,0
Water Volume	L		5,9	7,1	8,7	10,0	14,5	16,2	18,5	20,4	27,4	31,7	34,7	47,5	53,6


		20	30	40	50	60	70	80	100	135	145	165	205	245
	L	865	1015	1215	1375	1285	1435	1635	1785	1830	2110	2310	2340	2640
	А	660	810	1000	1160	1050	1200	1385	1535	1555	1835	2035	2000	2300
	В	140	140	140	140	168	168	168	168	194	194	194	219	219
	С	195	195	195	195	245	245	245	245	260	260	260	300	300
	D	120	120	120	120	120	120	120	120	120	120	120	150	150
	E	80	80	80	80	80	80	80	80	80	80	80	80	80
Sizes (mm)	Н	160	160	160	160	170	170	170	170	195	195	195	225	225
	J	117	117	117	117	147	147	147	147	180	180	180	200	200
	K	550	700	900	1060	910	1060	1260	1410	1200	1500	1700	1800	2100
	d1	G 1 1/2	G 1 1/2	G 2	G 2	G 2 1/2	G 2 1/2	G 2 1/2	G 2 1/2	G 3	G 3	G 3	DN 100	DN 100
	d2	FL 16	FL 16	FL 16	FL 16	FL 22	FL 22	FL 22	FL 22	FL 22	FL 22	FL 22	FL 35	FL 35
	d3	FL 28	FL 28	FL 28	FL 28	FL 35	FL 35	FL 35	FL 35	FL 42	FL 42	FL 42	FL 54	FL 54
Weight	kg	40	43	49	53	69	74	81	85	112	125	134	167	176

	Water Inlet Temperature	12 °C	EvaporationTemperature (DEW)	2,75 °C
R407C	Water Outlet Temperature	7 °C	Condensation Temperature	45 °C
	Contamination Coefficient	0,000043 m ² K/W	Extreme Temperature	4 K

MIT-BED Double Circuit Evaporators

			290	340	390	450	500	590	660	770	920	1050	1150	1250	1350	1500
Conneity		kW	295	345	395	450	515	585	665	775	900	1050	1150	1250	1350	1450
Capacity	Q _w	Tons (RT)	84,0	98,3	112,5	128,2	146,7	166,7	189,5	220,8	256,4	299,1	327,6	356,1	384,6	413,1
Mass Flow	WN	m³/h	50	59	68	77	88	99	116	132	160	181	200	213	236	265
Pressure Loss	Δр	kPa	28	50	34	36	39	54	37	59	58	62	58	63	66	73
Refrigerant Fluid Volume		L	36,9	41,7	47,8	56,5	64,3	72,8	83,7	96,7	116,5	138,6	166,7	173,8	188,6	213,2
Water Volume		L	98,5	93,0	85,9	139,8	130,8	121,0	227,4	212,5	189,7	224,3	301,7	293,5	396,0	369,7

		290	340	390	450	500	590	660	770	920	1050	1150	1250	1350	1500
	L	2670	2670	2670	2720	2720	2720	2750	2750	2750	3240	3275	3275	3285	3285
	А	2270	2270	2270	2270	2270	2270	2200	2200	2200	2700	2700	2700	2700	2700
	В	273	273	273	324	324	324	406	406	406	406	457	457	508	508
	С	350	350	350	420	420	420	510	510	510	510	570	570	620	620
	D	150	150	150	150	150	150	200	200	200	200	200	200	200	200
	Е	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Sizes (mm)	Н	255	255	255	285	285	285	335	335	335	335	355	355	355	355
	J	245	245	245	280	280	280	370	370	370	370,0	420,0	420,0	470	470
	K	2100	2100	2100	2100	2100	2100	2000	2000	2000	2200	2200	2200	2200	2200
	d1	DN 125	DN 125	DN 125	DN 150	DN 150	DN 150	DN 200							
	d2	FL 42	FL 54	FL 54	FL 54	FL 54									
	d3	FL 67	FL 67	FL 67	FL 80	FL 105	FL 105	FL 105	FL 105						
Weight	kg	230	237	245	308	320	337	510	528	554	621	740	749	840	873

R407C	Water Inlet Temperature	12 °C	EvaporationTemperature (DEW)	2,75 °C
	Water Outlet Temperature	7 °C	Condensation Temperature	45 °C
	Contamination Coefficient	0,000043 m ² K/W	Extreme Temperature	4 K

Shell & Tube Condensers

BC Tubular Type Condencers

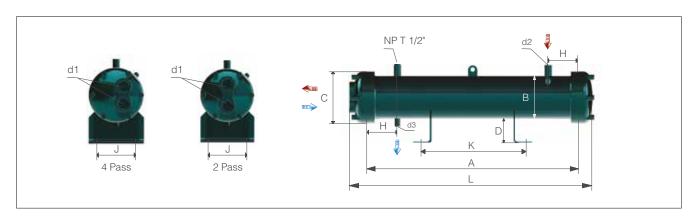
Ekin BC type condensers have basic capacity and geometry options up to 1800 kW. Suitable refrigerants are all HFCs and HCFCs.

With its special production BCM models that can be used in sea water, it makes its weight in the maritime sector. Connection type (flanged, threaded, welded, etc.) and diameters can be changed.

Please contact us for special order products out of catalog.

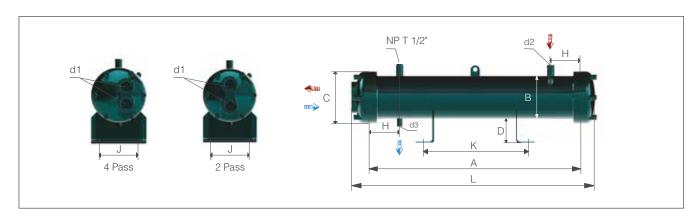
Usage Areas of Tubular Condensers

- Heating Pumps
- Cooling Groups
- Ice Machines
- Maritime Industry



MIT-BC Series Condensers

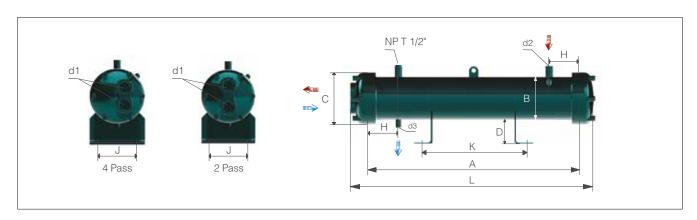
			20	35	45	55	65	65C	75C	90C	60	90
Capacity	Q _w	kW	22	33	42	51	58	65	79	94	60	81
		Tons (RT)	6,3	9,4	12,0	14,5	16,5	18,5	22,5	26,8	17,1	23,1
Mass Flow	WN	m³/h	3,5	6,1	7,8	9,5	11,2	10,4	12,9	15,6	11	15,6
Pressure Loss	Δρ	kPa	16	29	30	33	31	57	65	73	19	22
Pass			4	4	4	4	4	4	4	4	2	2
Refrigerant Fluid Volume	L		6,3	5,6	9	8,2	7,5	13,2	12,1	11	20,3	18,8
Water Volume	L		3,5	4,1	4,8	5,5	6,2	6,3	7,3	8,2	7,0	8,4


		20	35	45	55	65	65C	75C	90C	60	90
	L	790	790	815	815	815	1115	1115	1115	1515	1515
	А	700	700	700	700	700	1000	1000	1000	1400	1400
	В	140	140	168	168	168	168	168	168	168	168
	С	170	170	200	200	200	200	200	200	200	200
Sizes (mm)	D	80	80	80	80	80	80	80	80	80	80
	Н	100	100	100	100	100	100	100	100	100	100
	J	120	120	150	150	150	150	150	150	150	150
	K	350	350	350	350	350	500	500	500	700	700
	d1	G 1"	G 1"	G 1 1/2"	G 2"	G 2"					
	d2	W 22	W 22	W 28	W 35	W 35					
	d3	W 16	W 16	W 22	W 28	W 28					
Weight	kg	32	34	45	46	47	55	57	59	65	68

R407C	Water Inlet Temperature	28 °C	Condensation Temperature (DEW)	42 °C
	Water Outlet Temperature	33 °C	Extreme Cooling (Δt)	3 K
	Contamination Coefficient	0,000043 m ² K/W		

MIT-BC Series Condensers

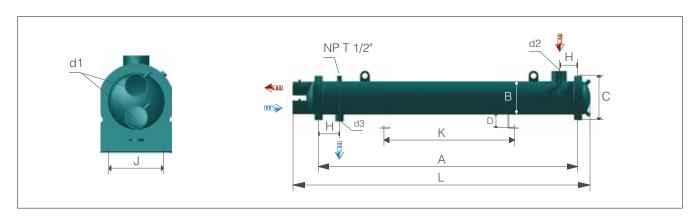
			100	120	130	145	165	180	200	220	245	265
Canacity		kW	94	111	120	141	163	176	205	227	251	273
Capacity	Q _w	Tons (RT)	26,8	31,6	34,2	40,2	46,4	50,1	58,4	64,7	71,5	77,8
Mass Flow	WN	m³/h	17,3	20,8	22,4	25,1	28,6	31,2	34,6	38,1	42,4	45,9
Pressure Loss	Δр	kPa	21	25	27	46	50	36	33	33	48	52
Pass			2	2	2	2	2	2	2	2	2	2
Refrigerant Fluid Volume		L	17,2	15,7	14,9	22,4	20,4	19,4	27	25	36,5	34,5
Water Volume		L	9,8	11,1	11,8	12,1	13,9	14,7	18,1	19,8	21,6	23,4


		100	120	130	145	165	180	200	220	245	265
	L	1515	1515	1515	1915	1915	1915	1915	1915	1915	1915
	А	1400	1400	1400	1800	1800	1800	1800	1800	1800	1800
	В	168	168	168	168	168	168	194	194	219	219
	С	200	200	200	200	200	200	250	250	250	250
	D	80	80	80	80	80	80	80	80	80	80
Sizes (mm)	Н	150	150	150	150	150	150	150	150	150	150
	J	150	150	150	150	150	150	180	180	200	200
	К	700	700	700	900	900	900	900	900	900	900
	d1	G 2"	G 2 1/2"	G 2 1/2"	G 2 1/2"	G 2 1/2"					
	d2	W 35	W 35	W 35	W 42	W 42	W 42	W 42	W 42	W 54	W 54
	d3	W 28	W 28	W 28	W 35	W 35	W 35	W 35	W 35	W 42	W 42
Weight	kg	71	73	75	85	89	91	124	128	139	143

	Water Inlet Temperature	28 °C	Condensation Temperature (DEW)	42 °C
R407C	Water Outlet Temperature	33 °C	Extreme Cooling (Δt)	3 K
	Contamination Coefficient	0,000043 m ² K/W		

MIT-BC Series Condensers

			285	315	340	360	400	450	480	520	550	610
Canacity		kW	295	321	345	380	424	472	498	557	596	649
Capacity	Q _w	Tons (RT)	84,0	91,5	98,3	108,3	120,8	134,5	141,9	158,7	169,8	184,9
Mass Flow	WN	m³/h	49,3	54,2	58,8	62,3	69,2	77,9	83,2	90	95,2	106
Pressure Loss	Δр	kPa	55	42	59	44	48	55	37	37	38	43
Pass			2	2	2	2	2	2	2	2	2	2
Refrigerant Fluid Volume		L	32,5	64,9	63	59	55	51,1	89	83	79	75,1
Water Volume		L	25,1	28,1	29,8	33,3	36,8	40,4	44,6	49,9	53,4	57,0


		285	315	340	360	400	450	480	520	550	610
	L	1915	1925	1925	1925	1925	1925	1940	1940	1940	1940
	А	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
	В	219	273	273	273	273	273	324	324	324	324
	С	250	295	295	295	295	295	350	350	350	350
	D	80	100	100	100	100	100	100	100	100	100
Sizes (mm)	Н	150	150	150	150	150	150	150	150	150	150
	J	180	240	240	240	240	240	280	280	280	280
	K	900	900	900	900	900	900	900	900	900	900
	d1	G 2 1/2"	G 3"	G 4"	G 4"	G 4"	G 4"				
	d2	W 54	W 54	W 54	W 54	W 54	W 54	W 54	W 54	W 54	W 80
	d3	W 42	W 42	W 42	W 42	W 42	W 42	W 42	W 42	W 42	W 54
Weight	kg	147	181	185	193	201	208	248	259	267	274

	Water Inlet Temperature	28 °C	Condensation Temperature (DEW)	42 °C
R407C	Water Outlet Temperature	33 °C	Extreme Cooling (Δt)	3 K
	Contamination Coefficient	0,000043 m ² K/W		

MIT-BC Series Condensers

			675	760	840	940	1040	1100	1220	1360	1520	1680
Canacity	0	kW	702	793	867	1039	1178	1243	1350	1489	1670	1849
Capacity	Q_{W}	Tons (RT)	200,0	225,9	247,0	296,0	335,6	354,1	384,6	424,2	475,8	526,8
Mass Flow	WN	m³/h	117	132	145	163	180	190	211	235	263	291
Pressure Loss	Δρ	kPa	49	37	41	49	51	54	45	50	39	41
Pass			2	2	2	2	2	2	2	2	2	2
Refrigerant Fluid Volume		L	71,1	92,1	85,2	144	131,9	125,3	180,1	169,1	222,3	205,8
Water Volume		L	60,5	81,4	87,5	109,6	120,4	126,3	140,8	150,6	174,3	188,9

		675	760	840	940	1040	1100	1220	1360	1520	1680
	L	1940	2175	2175	2415	2415	2415	2435	2435	2455	2455
	А	1800	1800	1800	2000	2000	2000	2000	2000	2000	2000
	В	324	356	356	406	406	406	457	457	508	508
	С	350	430	430	480	480	480	530	530	580	580
	D	100	100	100	100	100	100	100	100	100	100
Sizes (mm)	Н	150	150	150	150	150	150	150	150	150	150
	J	280	320	320	370	370	370	420	420	470	470
	K	900	900	900	1000	1000	1000	1000	1000	1000	1000
	d1	G 4"	J 5"	J 5"	J 6"	J 6"	J 6"	J 6"	J 6"	J 6"	J 6"
	d2	W 80	W 100	W 100	W 100	W 100					
	d3	W 54	W 80	W 80	W 80	W 80					
Weight	kg	283	352	366	466	490	503	592	614	725	758

	Water Inlet Temperature	28 °C	Condensation Temperature (DEW)	42 °C
R407C	Water Outlet Temperature	33 °C	Extreme Cooling (Δt)	3 K
	Contamination Coefficient	0,000043 m ² K/W		

SERPANTINES

They are used as single or grouped where the heat needs to be changed. Serpantines can be used in every sector, especially in the textile sector, in air conditioners in drying machines and in stoves, especially in air handling units.

By taking into account customer demands and product use places, product selection is made in the most appropriate way by considering efficiency, product costs. Alternative solutions are offered by considering environmental conditions and safety rules. Steam, hot oil, sea water, air and water can be used as fluid in the serpantines.

Spiral Winged Serpantines

Depending on the customer request, serpentine is manufactured by using electro-galvanized coating or hot-dip galvanized coating on carbon steel tube DKP finned coils. Thanks to this coating in serpentine production, the heat transfer is increased while the oxidation rate is reduced.

In standard serpentine products, the wings are fixed to the pipe by spot welding. However, continuous welding can also be applied between wing and pipe during production of serpentine according to customer demand.

Oval Pipe Serpentines

The most common problem in applications related to fluid mechanics is the friction resistance caused by the form of bodies. The form of the body in contact with the fluid can be reduced by making it more suitable to the current shape.

Oval pipes are more suitable to the current shape than circular pipes.

Both spiral winged serpentine and flake serpentine are manufactured with oval pipes.

Sequins Serpantines

Depending on the customer's request, plating solder coating can be applied instead of internal blowing in the stamping coils with copper and special alloy. With this coating, the heat transfer is increased

while the oxidation rate is reduced. In stamping serpentines, The number of pipes can be changed according to customer's requirement.

Grooved Pipes

In terms of heat transfer and pressure drop in the heat exchangers, the properties of the fluid, flow condition and heat transfer surface area are effective. The surface shape of the tubular pipes increases the turbulent properties of the fluid. Thanks to the helically-shaped flow patterns around the pipes, the heat transfer rate can be increased significantly by providing turbulence at low fluid speeds. The grooving of the pipes with a spiral pattern does not have any negative effect on the durability of the material but on the contrary provides an improved thermal expansion feature.

Grooved pipes can be used primarily in evaporators or condenser heat exchangers for air conditioning and cooling purposes, heat exchangers produced with such pipes can also be used for industrial air discharge, condenser / chiller, flue gas, steam, water, glycol, alcohol, oil and many other special applications. suitable.

Turbulators

Turbulators were obtained by the development of serpentines with oval wings. Increases the turbulence of air with increased wing sections and increases heat transfer. It is not suitable for use in fluids with high pollution factor. It is difficult to clean due to wing turbulators.

BATTERIES

Water, steam and air conditioner batteries are produced in the desired size and capacity according to customer requirements. In order to select the product that best suits your needs in battery designs, the necessary calculations are performed using a special software program.

Water and Steam Batteries

Aluminum or epoxy coated aluminum or copper coverslips are used in batteries in flat or wavy surfaces. Cladding thicknesses vary from 0.12 mm to 0.20 mm depending on the need.

Copper tubes with diameters of 3/8", 1/2", 5/8" are used. After the fin is set, the machines are mechanically inflated in automatic machines to ensure full contact and thus heat transfer is maximized.

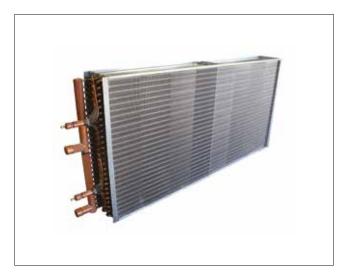
In steam coils, thick meat pipes resistant to high pressures such as 0.7 mm and 1 mm are used. Copper tubes are used in collectors of copper coils and steel pipes are used in collectors of hot and cold water coils. On request, the collector pipe can be made of stainless steel. Steel couplings are used as standard in collectors and brass fittings are used on request. All products are equipped with air and water purifiers and cuffs.

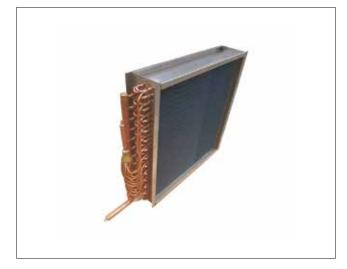
The number of pipes and rows is determined by considering the capacity value and pressure loss required by the customer. The optimum fit is selected by comparing pressure loss and capacity values. Unless otherwise stated, the batteries are tested in a pool filled with water at 40-45 °C with 20 bar pressure. After the test, the products are washed externally and dried.

Air Conditioning Evaporators and Condensers

Air conditioner condenser and evaporators are produced in desired size and capacity according to customer requirements. The production capacity and size are carried out according to the pictures, samples or data sent by the customer. Capacity and size calculations related to the products can be done precisely by the software program used. In the 3/8" tubular batteries 25x12.5 mm, 25x21.65 mm or 31.75x27.5 mm fin molds; 40x34.64 mm mold is used in 5/8 "tubular batteries.

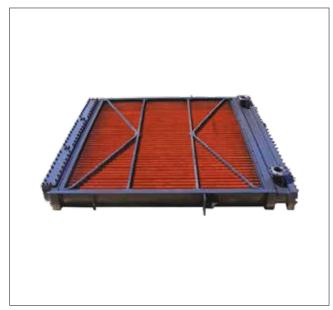
If requested, production can be carried out in the form of a checkered form for the specified molds. All condenser and evaporator batteries are tested at a pressure of 35 bar and shipped with 3 bar nitrogen after testing.


If requested by the customer, the products are painted with electrostatic powder paint and the standard color RAL7038 is used.



DX Batteries

DDX Battery means using refrigerant with a compressor, loading the heat from the evaporator to the refrigerant and discharging it into the atmosphere (ie transferring heat from air to air). In doing so, the refrigerant is vaporized directly at the source (ie in the air handling unit) where the heat is to be transferred. A different fluid is not used when transferring heat such as other systems. In the case of heat transfer with conventional chillers, the heat is first transferred to the water and then transferred to the heat exchanger in the chiller, where it is transferred to the refrigerant. The heat transferred to the fluid is again thrown into the atmosphere with the help of the compressor.


RADIATORS

The radiators formed by the grouping of the serpentines vary according to their fluid types and usage areas. Fluid types; hot water, superheated water, seawater, steam, superheated oil and nitrogen etc. radiators used in the gas. It is possible to classify according to the Serpentine type. It is listed as bare tube, serpentine with straight pipe, serpentine with oval pipe, flat double pipe with winged, grooved and crooked pipe radiators.

The radiators classified according to the serpentine structure can also be classified as galvanized, electro galvanized coated serpentine and hot dipped galvanized stud serpentine. According to the serpentine, wing, mirror and collector material used, it can be classified as complete carbon steel, complete stainless steel, complete copper serpentine and radiator group as different material radiators.

Pipe and Wing Information

Carbon steel, stainless steel, copper, brass and bafon pipe and special alloy tube serpentines can be used. Depending on the type of fluid, area and purpose of use, pipe and wing selections are made in such a way that highest efficiency is achieved by considering fluid side pressure drops.

Usage Areas

It is used in textile sector, drying machines, air heating and ambient heating and / or cooling depending on the fluid type. It is used in hot oil systems for heating and / or hot air. The radiators that can be used in the air-oil cooling process are also used for the cooling of sea water and air in the shipping sector.

ECONOMIZERS

Flue Gas Economizers

Today's competitive conditions lead firms to maintain the highest level of energy with high cost. In particular, the use of waste hot water energy in the textile sector with the use of waste flue gas generated in steam, water and hot oil boilers contributes to the production costs and the country's economy. The systems made by taking into account the process values pay themselves in a short time. Economizers take names according to processes. Waste flue gas is used to obtain hot water and hot air from the gases thrown into the atmosphere as in the ram machines used in the textile industry.

The most important points in the applications of waste flue gas are the properties of the gas and the condensation temperatures. In the case of flue gases, acid appears in case of condensation and all surfaces with condensation must be made of acid-resistant materials. Condensation is not preferred if the minimum pressure loss is targeted and the economizer can be designed from carbon-steel materials. We can classify according to economizers systems and materials. Economizers are classified according to the processes and materials used.

Superheated Water Production Economiser

- External dimensions of 4490x4191x1320 mm.
- 1"x3.20mm P235GH ST 35-8 quality carbon steel.
- 8 mm pitch on the pipe, 13x1,20 mm.
- DKP Wing Coil and Continuous MIG MAG Welding Serpentine.
- Economizer production with elbow rotating and 120 bar compressive strength.

Economizers by System;

Non-Condensing Waste Smoke Gas Economizers;

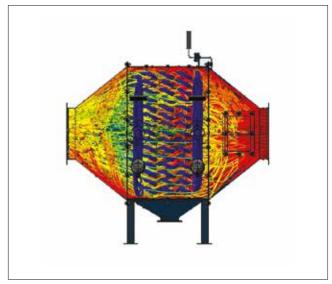
- Hot Water Generators
- Super Heated Water Generators
- Economizers with Low Pressure Steam Generators and Hot Air Generators

Condensing Waste Chimney Gas Economizers

- Hot Water Generators
- Superheated Water Generators
- Low Pressure Steam Generator
- Hot Air Generators

Economizers by Material;

- Complete Carbon Steel Economizers
- Bladed Serpentine, Finned Serpentine Economizers
- Complete Stainless Steel Economizers
- No-Wing Serpatine, Winged Serpatine Economisers

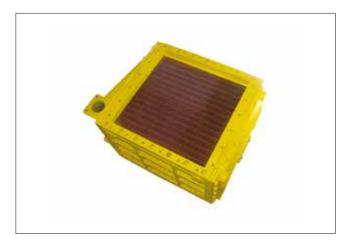


Waste Heat Recovery Systems

The boiler feed water is heated with the smoke gases inside the economizer before entering the boiler's actual heating surfaces. In this way, as the temperature difference between the water sent to the boiler and the water being heated is reduced, the output of the gases in the water becomes easier and the thermal efficiency of the boiler increases.

AIR COOLERS

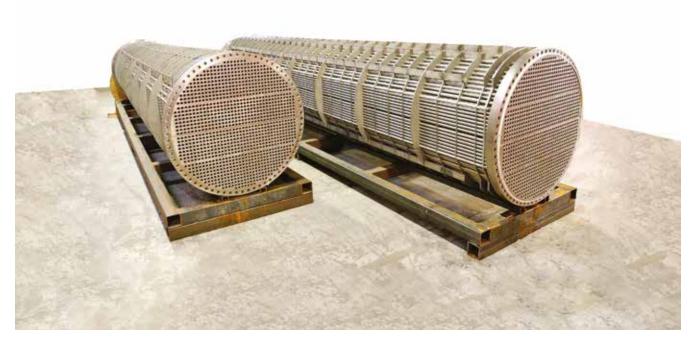
Engine Air Coolers


They are the coolers that increase the pressure by means of a turbo charge and reduce the volume by cooling the heated air, thereby increasing the amount of air entering the cylinder and thus allowing a better and more efficient combustion of diesel engines.

Our experience, developed in close cooperation with engine manufacturers and plant system contractors, enables us to develop tailor-made, customer-focused and economic concepts for the optimization of complete charge air modules in an engine. Thanks to the use of special materials, advanced coating technology and new poultry pipe systems, the charge air coolers are also active in engines that burn biogas and other special gas fuels.

Major applications are marine, off-road and stationary diesel and gas engines with performance over 200 kW.

The most important design feature is the curvature of the wing surfaces. The curved surface produces effective turbulence which is very important for efficient heat transfer. The fins are always made of pure copper and the pipe diameter is 10.6 mm. Material CU.NI is 90/10 (available in 70/30).



OPERATION AND MAINTENANCE OF TUBE HEAT EXCHANGERS

Even though they are long-lasting and smooth devices, they are exposed to some deformations and pollution caused by external factors. According to the systems used in certain periods of time, cleaning and maintenance are needed. A proper cleaning without proper chemicals may damage the pipes and require larger revisions to the heat exchanger. Therefore, it is very important that cleaning and maintenance are carried out by specialized teams.

MIT's expert staff provides cleaning, maintenance and repair services for each type of tube heat exchanger. Maintenance and cleaning processes are completed in the shortest possible time and delivered to your business in the first day's performance. In addition to cleaning, corroded and deformed inner tubes can be changed individually or in bundles depending on the structure of the tube heat exchanger. During this process, the pipe materials can be selected as desired.

Caution

Please review this section carefully. The information contained in this manual covers the requirements for the installer and the user during installation, use and maintenance of the device. The use and maintenance of MIT-brand heat exchangers must be carried out in accordance with the guidelines in this manual. Otherwise, the responsibility will belong to the practitioner. The devices may only be used for the intended purpose. Non-objective uses can be dangerous. It is the responsibility of the user to interfere with the device and to use the original spare parts except for the authorized MIT authorized services.



Installation Instructions

- The pipe bundle must be mounted in the heat exchanger chamber so that the serpentine can be disassembled and removed in the detachable serpentine heat exchangers.
- When the heat exchanger is put into operation, first the cold fluid and then the hot fluid should be put into operation in a suitable way and the air inside the device must be drained.
- When the heat exchanger is to be shut down the hot fluid must then be disconnected from the cold fluid.
- The heat exchanger inlet water (heated fluid should be filtered.
- The heat exchanger must be supplied with soft water to feed the boilers producing the heating fluid to prevent calcification.
- The heat exchanger must be inserted and cleaned periodically.
- Check that the devices on the heat exchanger are intact (thermometers, valves, thermostatic valves, condensate, etc.) which are defective should be repaired or replaced.
- The heat exchanger should be opened every year and the coils should be cleaned.
- The dismantled flange seals must be kept firm and clean, and the bolts tightened properly.

Maintenance and Repair

- Check that the luminaires on the heat exchanger installation are intact.
- The heat exchanger should be opened once a month by opening the drain valve and cleaning of the deposited deposits at the bottom.
- The heat exchanger should be serviced once a year.
- When water quality is not suitable (hardness degree, hard water and very hard water) and at high temperatures, maintenance is more convenient.
- The following operations are performed during maintenance.
 - The hot water circuit is operated. Circuit and hot water production are controlled.
 - Check whether there is a water leak from the device or connections.
 - Check the safety valve.
 - Check whether the device temperature gauge is working or not.
- During maintenance, the drain valve is removed and the water inside the device is drained. During draining, drainage of the device should be connected with an expense and water supply to the boiler room should be prevented.
- Check the device for any residue. If there is a residue, the cleaning flange of the appliance is opened and cleaned by holding pressurized water.

MIT authorized services are recommended for maintenance and repairs. Our company isn't responsible for unauthorized applications. It is recommended to use original spare parts for maintenance and repairs.

HYDRAULIC OIL COOLER

YS1 SERIES HYDRAULIC OIL COOLERS WITH DC MOTOR

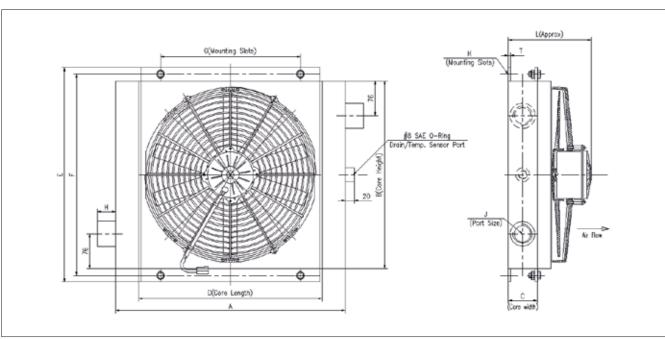
Operating Conditions

Maximum Operating Pressure: 250 psi Maximum Operating Temperature: 250 °F

Materials

Cooler: Aluminum Fan Cover: Plastic

Blade Tip: Powder Painted Steel

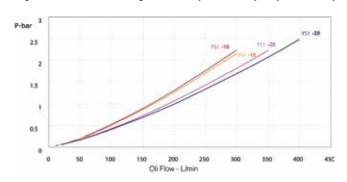

Fan Blades: Plastic

Hydraulic Oil Coolers with DC Motor

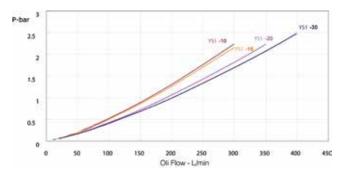
- Bar & Plate brazed aluminum core.
- Proven, compact and powerful design with field testing.
- High heat transfer suitable for the model.
- Air-fin design which minimizes the pollution coefficient.
- Welded aluminum connection / connection equipment.
- Standard NPT Mouth, SAE BSPP available.
- 12 or 24 Volt DC Fans.
- Custom design.

						YS	1 SEF	RIES I	DIMENSIO	NS					
Model	Α	В	С	D	Е	F	G	Н	J	Т	K	L	Volt	age	Approx. Weight
Number													12V	24V	(kg)
YS1-10	355	253	63	255	298	276	126	25	#12SAE O-Ring	4	8x13 slot	173	5.2	2.6	9
YS1-16	405	300	63	305	343	324	149	30	#16SAE O-Ring	4	8x13 slot	173	8.2	4.1	11
YS1-20	500	410	63	400	468	440	305	40	#20SAE O-Ring	5	11x19 slot	181	19	9.5	14
YS1-30	600	504	63	500	562	534	405	40	#30SAE O-Ring	5	11x19 slot	183	19	9.5	24

					YS1 9	SERIE	S PE	RFOR	MAN	CE LI	ST						
Oil Flow	<i>ı</i> -L/min	10	15	20	30	40	50	60	70	80	100	150	200	250	300	350	400
	YS1-10	3.2	3.5	3.7	4.0	4.1	4.3	4.3	4.4	4.5	4.6	4.8	4.9	5.0	5.0		
Heat	YS1-16		4.8	5.2	5.6	5.8	6.0	6.1	6.3	6.4	6.5	6.8	7.0	7.1	7.2		
Reject. (kW)	YS1-20			8.2	9.4	10.0	10.4	10.8	11.1	11.4	11.6	12.2	12.6	12.9	13.1		
	YS1-30			11.4	13.2	14.3	15.2	15.8	16.4	16.8	17.4	18.3	19.0	19.6	20.0	13.3	
	YS1-10	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.9	1.3	1.8	2.2	20.3	20.5
Oil ΔP	YS1-16		0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.5	0.9	1.3	1.7	2.2		
(bar)	YS1-20			0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.7	1.1	1.4	1.8	2.2	
	YS1-30			0.1	0.1	0.1	0.2	0.2	0.3	0.3	0.4	0.7	1.0	1.3	1.7	2.1	2.5


Industrial Applications

Oil coolers are used in a wide range of mobile applications worldwide;


- Agricultural machinery
- Street cleaning machines
- Hydraulic drives

- Compressors
- Construction machinery
- Engine oil cooling

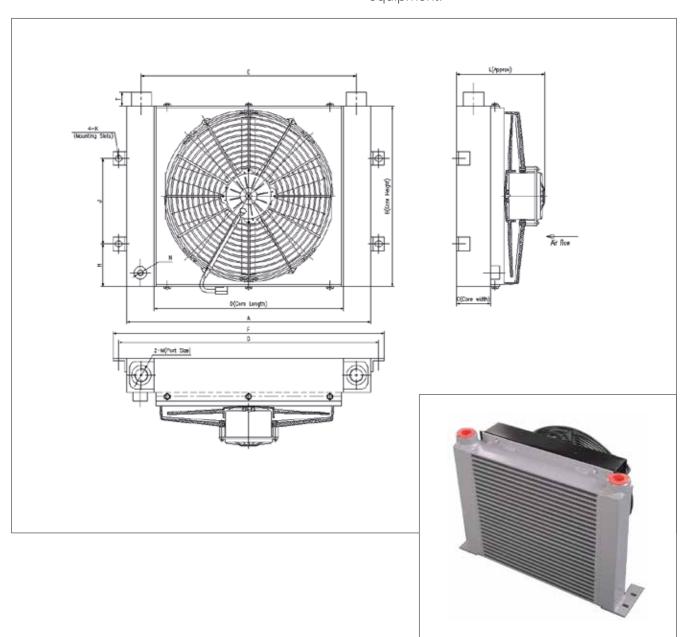
Specific Heat Rejection (YS1-10)->(YS1-30)

Pressure (YS1-10)->(YS1-30)

И

YS2 SERIES HYDRAULIC OIL COOLERS WITH DC MOTOR

Operating Conditions


Maximum Operating Pressure: 300 psi Maximum Operating Temperature: 350 °F

Materials

Chiller: Aluminum Fan Cover: Plastic Fan Blades: Plastic

Hydraulic Oil Coolers with DC Motor

- Bar & Plate brazed aluminum core.
- Proven, compact and powerful design with field testing.
- High heat transfer suitable for the model.
- Air-fin design which minimizes the pollution coefficient.
- Welded aluminum connection / connection equipment.

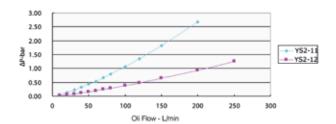
						YS	2 SEF	RIES	OIME	ISIONS	3				
Model					E F G H J T K L	,	Volt	age	Approx.						
Number	А	D		D			G		J	'	N.	L	12V	24V	Weight (kg)
YS2-11	491	380	40	411	451	550	526	94	190	30	13x1 slot	158	NPT1"	NPT3/8"	10
YS2-12	540	400	75	420	476	600	576	94	190	30	13x1 slot	193	NPT1"	NPT3/8"	16

	YS2 SERIES PERFORMANCE LIST														
Oil Flow-L/min 10 20 30 40 50 60 70 80 100 120 150 200 2													250		
Heat	YS2-11	4.6	5.6	6.0	6.3	6.5	6.7	6.8	6.9	7.2	7.3	7.5	7.7		
Transfer (kW)	YS2-12	7.4	9.8	11.1	11.9	12.4	12.9	13.2	13.5	13.5	14.2	14.6	15.2	15.6	
Oil ΔP	YS2-11	0.06	0.13	0.22	0.32	0.43	0.54	0.66	0.79	1.06	1.35	1.82	2.67		
(bar)	YS2-12	0.02	0.05	0.08	0.12	0.15	0.19	0.24	0.28	0.38	0.48	0.64	0.93	1.25	

Industrial Applications

Oil coolers are used in a wide range of mobile applications worldwide;

- Agricultural machinery
- Compressors
- Street cleaning machines
- Construction machinery


• Hydraulic drives

• Engine oil cooling

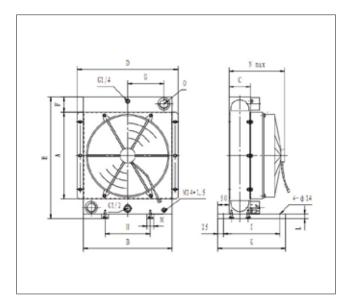
Heat Rejection (YS2-11)->(YS2-12)

Pressure Loss (YS2-11)->(YS2-12)

YS3 SERIES HYDRAULIC OIL COOLERS WITH DC MOTOR

Operating Conditions

Maximum Operating Pressure: 60 bar


Ambient Temperature: 300 °C Hydraulic Oil Maximum Inlet

Temperature: 70 °C

Materials

Cooler: Aluminum Fan Cover: Plastic Fan Blades: Plastic

Hydraulic Oil Coolers with DC Motor

- Bar & Plate brazed aluminum core.
- Proven, compact and powerful design with field testing.
- High performance and working pressure. (Even in heavy hydraulic and greasing operations.)
- Air-fin design which minimizes the pollution coefficient.
- Welded aluminum connection / connection equipment.
- Standard NPT Mouth, SAE BSPP available.
- 12 or 24 Volt DC Fans.
- Custom design.

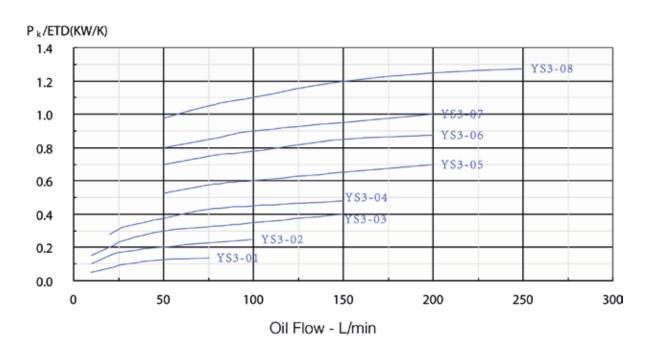
Industrial Applications

These units can be used for the following cooling processes;

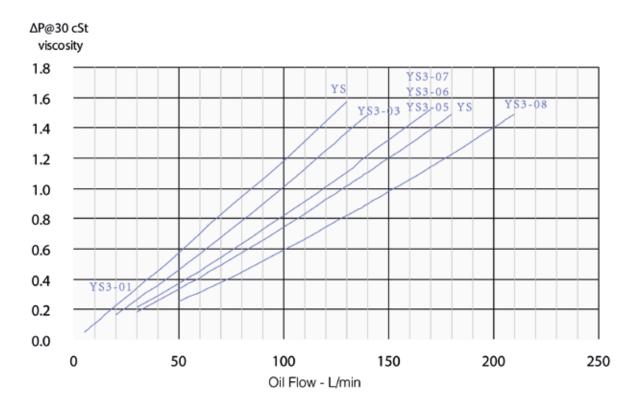
It is used for the cooling of water containing mineral oil, synthetic oil, biological oil and similar HFA, HFB, HFC and HFD fluids and at least 50 percent antifreeze and anticorrosive additive.

			YS3 SE	RIES DIME	NSIONS						
Model	YS3-01	YS3-02	YS3-03	YS3-05	YS3-06	YS3-07	YS3-08				
Power (kW)	2-5	4-10	8-15	10-20	15-25	20-35	25-40	35-75			
Dimensions (mm)											
А	200	300	400	400	550	650	800	800			
В	191	302	395	395	410	555	555	650			
С	65	65	65	95	95	95	95	140			
D	248	355	450	450	465	610	610	725			
Е	315	415	515	535	690	790	940	960			
G	50	50	50	60	60	60	60	70			
G	65	115	160	160	165	235	235	280			
Н	80	150	200	200	200	310	310	400			
Ι	150	200	200	200	250	250	250	250			
K	200	250	250	250	300	300	300	300			
L	15	15	15	15	20	20	20	20			
М	25	25	25	30	50	50	50	50			
N	175	370	400	430	450	450	450	590			
0	G1"	G1"	G1"	G1 1/4"	G1 1/4(1)"	G1 1/4"	G1 1/4"	G1 1/2"			

	YS3 SERIES FAN TECHNICAL INFORMATION													
Model	YS3-01	YS3-02	YS3-03	YS3-04	YS3-05	YS3-06	YS3-07	YS3-08						
Fan Dimensions (mm)	167	255	350	350	450	500	500	630						
Fan Speed (prm)	3250	2600	2950	2950	1500	1500	1500	1000						
Sound Volume (db)	71	74	76/78	77/78	77	79	79	79						
Motor Voltage (v)	12/24	12/24	12/24	12/24	220/380 Hidrolik	220/380 Hidrolik	220/380 Hidrolik	220/380 Hidrolik						
Power (kW)	0.08	0.15	0.2/0.25	0.2/0.25	0.37	0.55	0.55	1.1						
Volume (I)	1	1.9	2.9	5.2	6.3	9.4	10.6	17.7						
Operating Pressure (bar)	26	26	26	26	26	26	26	26						


Industrial Applications

- Industrial Hydraulic Systems
- Mobile Hydraulic Systems


- Drive Gears
- Compressors
- Hydraulic Couplings

Heat Rejection Performance Curves (YS3-01)->(YS3-08)

Pressure Loss Performance (YS3-01)->(YS3-08)

YS4 SERIES HYDRAULIC OIL COOLERS WITH AC MOTOR

Operating Conditions

Maximum Operating Pressure: 60 bar

Ambient Temperature: 35 °C

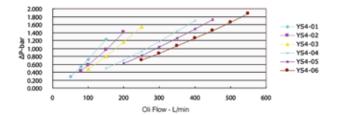
Hydraulic Oil Maximum Inlet Temperature: 70 °C

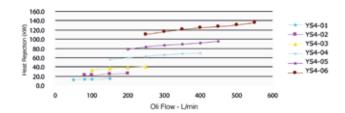
Materials

Cooler: Aluminum Fan Cover: Plastic Fan Blades: Plastic

Hydraulic Oil Coolers with DC Motor

- Bar & Plate brazed aluminum core.
- Proven, compact and powerful design with field testing.
- 220 or 380 volt AC fans.
- Hydraulic motor fan drive is available.
- Design is possible according to customer requirements for both motor and industrial applications.


		YS4	SERIES DI	MENSIONS			
Code		YS4-01	YS4-02	YS4-03	YS4-04	YS4-05	YS4-06
А	mm	390	490	590	750	850	1000
В	mm	490	610	727	920	1035	140
С	mm	80	90	100	113	125	1190
D	mm	290	310	350	300	345	400
Е	mm	540	660	777	970	1085	1240
F	mm	290	410	527	620	735	890
G	mm	530	630	735	900	1000	1160
Н	mm	340	350	360	380	390	410
I	mm				450	460	480
Power	kW	12~15	20~26	32~40	50~70	75~95	105~140
Oil Flow	L/min	50~150	80~200	100~250	150~400	200~500	250~600
Oil Inlet Temperature	°C	70	70	70	70	70	70
Volume	L	6.12	9.47	14.3	26.4	33.2	48.9
Air Cooling Flow	m³/h	3600	5700	8400	13000	17000	22200
Fan Diameter	mm	350	450	550	690	750	900
Motor Voltage	V	220/380	220/380	220/380	Hidrolik Motor	Hidrolik Motor	Hidrolik Motor
Max. Operating Pressure	bar	20	20	20	20	20	20
Ambient Temperature	С	35	35	35	35	35	35



				YS4 9	SERIES	PERFO	RMAN	CE LIST	Г				
Oil Flov	v-L/min	50	80	100	150	200	250	300	350	400	450	500	550
	YS4-01	12.0	13.2	13.9	15.0								
	YS4-02		21.5	22.5	24.6	26.0							
Heat	YS4-03			33.2	36.3	38.8	40.0						
Reject. (kW)	YS4-04				56.0	60.1	62.8	65.7	67.8	70.0			
	YS4-05					78.4	82.9	86.3	89.5	92.2	95.0		
	YS4-06						110.5	116.2	120.7	124.1	127.6	130.8	135.0
	YS4-01	0.294	0.538	0.720	1.223								
	YS4-02		0.432	0.574	0.968	1.408							
Oil ΔP	YS4-03			0.478	0.797	1.154	1.539						
(bar)	YS4-04				0.490	0.702	0.931	1.175	1.433	1.702			
	YS4-05					0.619	0.818	1.028	1.250	1.483	1.724		
	YS4-06						0.697	0.872	1.057	1.249	1.449	1.656	1.869

Oil Pressure Loss Performance

Heat Rejection (YS4-01)->(YS4-06)

Industrial Applications

- Research Machines
- Municipality Street Cleaning Tools
- Hydrostatic Drives

- Construction Machinery
- Underground Mining
- Engine Oil Cooling

YS5 SERIES HYDRAULIC OIL COOLERS WITH DC MOTOR

Operating Conditions

Maximum Operating Pressure: 21 bar

Ambient Temperature: 14 bar

Hydraulic Oil Maximum Inlet Temperature: 120 °C

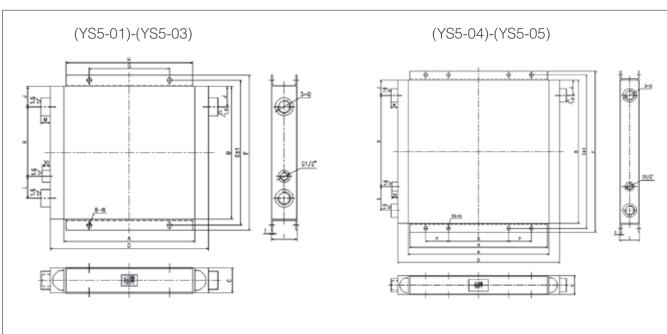
Maximum Cooling Capacity: 30 kW (OEC05)

Materials

Core: Brazed aluminum bar and plate

Tanks: 5052 Aluminum

Feeder Bar & Small Bar: 3003 Aluminum Air Fin, Tabulator & Last Plate: Aluminum


Connections: Aluminum

Hydraulic Oil Coolers with DC Motor

- Bar & Plate brazed aluminum core.
- Proven, compact and powerful design with field testina.
- 220 or 380 volt AC fans
- Hydraulic motor fan drive is available.
- Custom design is possible according to customer requirements for both motor and industrial applications.

	YS5 SERIES DIMENSIONS																	
Model Number	А	В	С	D	Е	F	G	Н	ı	J	Т	K	L	М	N	Р	Q	Approx. Weight (kg)
YS5-01	260	260	63	330	296	322	203	250	65	3	51	80	80	23	11x13 slot	/	G1"	5.7
YS5-02	330	333	63	400	364	390	203	320	65	3	51	175	55	23	11x13 slot	/	G1"	8.0
YS5-03	394	400	63	464	432	458	203	384	65	3	51	230	70	23	11x13 slot	/	G1"	10.7
YS5-04	473	479	63	543	513	539	203	463	65	4	51	305	80	23	11x13 slot	76	G1"	14.5
YS5-05	565	587	63	635	622	647	203	545	65	5	51	326	55	23	11x13 slot	76	G1-14"	21.1

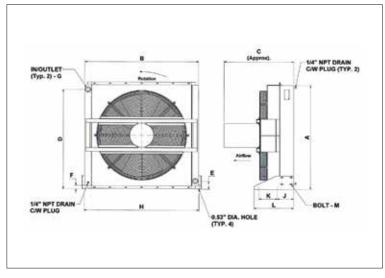
Industrial Applications

Coolers are mainly used in hydraulic oil engine oil, transmission oil, greasing oil applications and cooling circuits.

YS6 SERIES HIGH PERFORMANCE OIL COOLERS WITH HYDRAULIC MOTOR

Operating Conditions

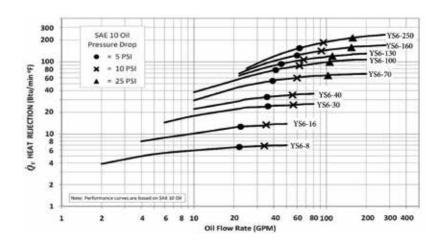
Maximum Pressure: 510 PSI Maximum Temperature: 250 F


Materials

Cooler: Aluminum Fan Cover: Plastic Fan Blades: Plastic

High Performance Oil Coolers with Hydraulic Motor

- Bar & Plate brazed aluminum core.
- Proven, compact and powerful design with field testing.
- High heat transfer suitable for the model.
- Electric or hydraulic motor is available.



					Υ	S6 SE	RIES DIMENS	SIONS					
Model Number	А	В	С	D	Е	F	G	Н	J	К	L	M Bolt	Approx. Weight (kg)
YS6-08	13.39	15.75	14.51	12.21	2.68	1.5	#16SAE ORB	14.61	4.50	3.50	8.79	M8x20	50
YS6-16	17.42	19.88	16.28	16.24	2.93	1.75	#16SAE ORB	18.74	4.50	3.50	8.79	M8x20	70
YS6-30	21.88	26.38	17.72	20.54	3.38	1.88	#20SAE ORB	25.28	5.50	3.74	10.35	M10x20	110
YS6-40	23.73	30.07	17.72	22.23	3.38	1.88	#20SAE ORB	29.17	5.50	3.74	10.35	M10x20	140
YS6-70	28.28	37.00	20.79	18.38	2.00	2.28	#20SAE ORB	37.48	5.50	7.88	15.00	M12x20	215
YS6-100	35.42	40.75	24.73	29.94	2.00	2.31	#20SAE ORB	41.44	5.50	7.88	15.00	M12x20	330
YS6-130	39.24	42.91	27.17	37.24	4.31	2.31	#20SAE ORB	43.46	7.00	7.88	17.00	M12x20	520
YS6-160	44.94	48.22	27.38	42.94	3.50	1.50	#24SAE ORB	49.29	7.00	7.88	17.00	M12x20	625
YS6-250	57.66	52.76	29.54	55.66	3.87	2.06	#24SAE ORB	50.55	7.80	10.00	21.50	3/4" UNC	770

	YS6 SERIES MOTOR FEATURES													
		Number of		Single	Phase	Motor	Three Phase Motor							
Model Number		Cycle RPM	Motor Body	Voltage	Hz	Full Load Amper 230V	Voltage	Hz	Full Load Amper 230V					
YS6-08	1/3	3425	IEC60	115/208-230	60	2.2	208-230/460	60	2.0					
YS6-16	1/2	3425	NEMA 56C	115/208-230	60	4.2	208-230/460	60	2.2					
YS6-30	1/2	1725	NEMA 56C	115/208-230	60	4.4	208-230/460	60	2.2					
YS6-40	1	1725	NEMA 56C	115/208-230	60	6.8	208-230/460	60	3.6					
YS6-70	2	1725	NEMA 56C	115/230	60	9.4	208-230/460	60	5.8					
YS6-100	5	1725	NEMA 184TC	208-230	60	20.2	208-230/460	60	13.0					
YS6-130	7-1/2	1725	NEMA 213TC	208-230	60	30.2	208-230/460	60	19.6					
YS6-160	7-1/2	1725	NEMA 213TC	208-230	60	30.4	208-230/460	60	19.8					
YS6-250	10	1725	NEMA 215TC	230	60	42	208-230/460	60	25.6					

YS6 Performance Curve

EKİN ACADEMY

Ekin is aware that the progress in its sector is possible through continuous development and learning.

Ekin Academy, established with this awareness, aims to provide high-quality and sustainable development with its modern education methods, to provide successful employees and to provide value to the society through social responsibility projects.

Training and development programs that will make a direct contribution to the results of our employees' work processes and which will make a difference in their personal development are prepared by Ekin Academy.

For our business partners and customers, our training modules prepared by our expert staff provide training support for pre-sales and post-sales issues such as commissioning, operation, maintenance and repair of our products.

In cooperation with universities within the scope of corporate social responsibility projects, we are experiencing the happiness of adding value to the society by allowing the engineer candidate, who aims to take place in the fields where Ekin is active, to meet with the sector and to experience the theoretical knowledge acquired in the fields of application.

In-Company Trainings

Ekin Academy conducts technical, leadership, strategy development, sales and training and development programs for different tasks in the fields of heat transfer, pressure vessels, package systems, food systems and liquid transfer.

Out-of-Company Trainings

We are realizing conferences and training activities to our business partners, professional groups and institutions where we carry out social responsibility projects in various locations of Turkey.

SALES TEAM

At Ekin, we produce a proactive solution by our engineering staff who are specialized in their field. Our team, which works with the aim of unconditional customer satisfaction, works selflessly in order to gain customer loyalty by raising the bar of success in products, services and processes.

We are happy to share our accumulated knowledge with our valued customers. Ekin will continue to be the best solution partner for you in all applications with all kinds of heating and cooling applications.

Customer Satisfaction

Customer rights are protected in all circumstances.

Privacy Policy

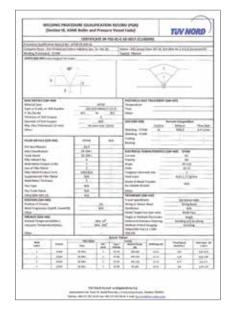
Aware of the importance of protecting personal information, personal information is not shared with third parties.

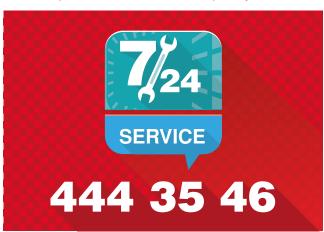
Information Security

The requirements of ISO 27001 information security management system are fulfilled at Ekin.

Ethical Values

In all our business relations, our principle of mutual benefit by adhering to laws and ethics is our principle.


CERTIFICATES


PROFESSIONAL SYSTEM SOLUTION CENTER

From our MIT professional system solution center, you can get help with problems with your pumps, heat exchangers and your system. Our solution center consisting of our expert engineers will be happy to help you.

- Domestic hot water installations.
- Central and district heating systems.
- Milk, yogurt, buttermilk heating, cooling and pasteurization systems.
- Industrial cooling and heating systems.
- Oil cooling systems.
- Energy recovery systems.
- Pool heating systems.
- Steam installations.

It is vital for your system to be designed and implemented correctly in the first installation in order to be able to operate at the desired capacity, smoothness and long life. For this reason, you can get first-hand

the technical support you need during the installation phase of your system and the problems that may arise in the business; You can reach us 24 hours (216) 444 35 46 in 7 days.

We would like to reiterate that we will be happy to share our knowledge accumulated over many years with our valued customers in order for your system to work correctly and performance.

Ekin will continue to be the best solution partner for you in all applications with all kinds of heating and cooling applications.

o (in) / ekinendüstriyel

Follow us on social media...

Our products are produced with Turkish engineering technology in **135 countries** in the world today...

Dudullu Organize Sanayi Bölgesi - Des Sanayi Sitesi 107. Sk. B14 Blok No: 2 Ümraniye / İstanbul / Turkey **Phone:** +90 216 232 2412 **Fax:** +90 216 660 1308 info@ekinendustriyel - **www.ekinendustriyel.com**

