

FLUID TRANSFER GENERAL CATALOGUE

Follow us on social media!

The first condition of innovation is to question. And the first condition of sustainable innovation is to question constantly.

The journey of innovation has started with a question for us too: "How can we develop value-added technologies in Turkey?". First turning point in this long journey was the birth of MIT (Made in Türkiye) brand. MIT made us the first plate heat exchanger producer of Turkey and it's founding vision was not to become a local alternative, it was to build a high-quality brand that can compete on a global level.

While we are working towards this goal in the past 17 years, our products and processes deemed worthy for documentation by many national and international quality assessment institutions such as ISO, TSE, CE, GOST and many more. This was the natural outcome of our constant questioning of the status-quo and our desire to outperform ourselves.

New Generation Engineering

With our engineering approach that focuses on the process, not the problem, we do not just specialize in a product, we consider the entire ecosystem of that product. Ergo, we produce all the other components of a system in addition to plate heat exchangers and we focus on the constant development of engineering staff required to provide an end-to-end application.

We provide a "solution" rather than a product with our business development, presales, sales and after sales services provided by our expert engineers.

In our 17th year, we continue to grow as a solution partner for projects that need high technology in more than 60 countries with our internationally approved high-quality plate heat exchangers; components such as accumulation tanks, boilers, industrial pumps and installation materials that completes these exchangers to form a system; and complementary services provided by our expert engineer staff.

HEAT TRANSFER PRODUCTS

- Gasketed Plate Heat Exchangers
- Brazed Heat Exchangers
- Shell & Tube Heat Exchangers
- Evaporators and Condensers
- DC Fan Driven Oil Coolers
- Heat Coils
- Serpentines / Radiators / Economizers

PRESSURE VESSELS

- Water Heater Tanks
- Water Storage Tanks
- Buffer Tanks
- Expansion Tanks
- Stainless Steel Tanks
- Balance Tanks / Dirt Separators / Air Separators / Air Tubes
- Steam Separators
- Pressured Air Tanks
- Neutralization Units

INDUSTRIAL AND FOOD GRADE SYSTEMS

- Heat Stations
- Industrial Process Systems
- Dosing Systems
- Substations
- Thermoregulators
- Pasteurizers
- CIP and Hygienic Process Systems
- Hygienic Storage and Process Tanks
- Homogenizers
- Turn-key Projects

FLUID TRANSFER PRODUCTS

- Lobe Pumps
- Hygienic Centrifugal Pumps
- Twin Screw Pumps
- Gear Pumps
- Magnetic Drive Pumps / Thermoplastic Pumps
- Dosing Pumps
- Air Operated Double Diaphragm Pumps (AODD)
- Drum Pumps
- Monopumps
- Peristaltic (Hose) Pumps
- Centrifugal Blowers
- Roots Blowers
- Turbo Blowers

FLOW CONTROL UNITS

- Butterfly Valves
- Ball Valves
- Globe Valves
- Knife Gate Valves
- Actuators
- Check Valves and Strainers
- Thermoplastic Valves

ENERGY SYSTEMS

MIT mitrojen doris magneto AIROO Truevelue inden

- Boilers
- Steam Generators
- Solar Collectors
- Chillers
- Cooling Towers

DINO ARuby PERIBEST

INJECTA INNSUN

Contents

MIT LOBE PUMPS

MIT lobe pumps are valve-free and positive-displacement pumps. Each MIT pump is a special solution. Lobe pumps are fully designed to meet the requirements of applications.

Working Principle of MIT Lobe Pumps

As the rotor rotates, the volume in the pump inlet line increases and the fluid is dragged into the pump. The fluid remaining between the rotors and the pump inner wall is transported to the pump outlet. These pumps are mainly composed of three or two lobe rotors which rotate from each other within the body. The rotation of the rotor pair can be defined by the direction of rotation of the drive, which creates a vacuum on the suction side of the pump. This vacuum draws fluid into the pump body. When the rotor is rotated, it is transferred to the fluid outlet line as a result of the volume decrease at the outlet.

Features

- Thanks to its positive displacement feature, it is used without problems in transferring low, medium and high viscosity fluids.
- No problem can be used when transferring products at temperatures in the range of O-150 °C.
- Easy installation and maintenance.
- Easy transport of adhesive, abrasive or surface-sensitive fluids.
- 4 different rotors available, 2 lobe rotors, 3 lobe rotors, butterfly rotors and single butterfly rotor-shaped.
- Two lobe options for products containing solid particles (like jam, molasses).
- Mechanical seal with double (wash) cartridge, mechanical seal, gaskets (for applications such as glucose, jam).
- Standard input / output as standard pump can easily convert from top to bottom input / bottom outlet.
- Rotation in both directions (counterclockwise and clockwise).
- The gearbox is made of cast iron with a protective coating coated with epoxy paint.
- All shaft, rotor and pump body are made of AISI 316 stainless steel.
- As the material quality of the surfaces in contact with the fluid is AISI 316 stainless steel, they are used in applications requiring hygiene.
- Clamp, food fitting and flange connection options are available.

ADVANTAGES OF MIT LOBE PUMPS

- Easily transfer medium size solids.
- There is no friction between the surface materials during the fluid transfer.
- The pump can be cleaned while it is connected to the service line.
- Quiet operation.
- In pumps with optional heating jackets, the flow of fluid through the material is prevented from freezing and provides an easy flow. It transfers smoothly without disturbing the product to be transferred.
- Optionally, it can be used in different application areas by making dashboard application on portable wheeled chassis. The only thing to do is to connect the power line to the board on the chassis.
- Taking the energy from the vehicle without taking up space on land vehicles, it provides convenience especially in the unloading and filling operations of food tankers.
- It carries out the transfer of high viscosity products without any problems.

LOBE PUMP SELECTION

The specifications of the product to be transferred and the line to be transferred to the lobe are the desired technical details. The desired values are shown in the table below in detail.

Desired Details	Sample Information
Type of Fluid	Chocolate, honey, buttermilk etc.
Flow Rate of Fluid	m³/H, L/H, TON/H etc.
Pressure of Fluid	Bar, mSS vb.
Viscosity of Fluid	cP, cSt vb.
Temperature of Fluid	°C
Density of Fluid	g/cm ³

HEATING JACKET, which is designed to prevent the product from freezing in the pump, is applied on the pump according to the demands.

MOTOR-FREE PUMP SIZE TABLE

Model	В	С	D	Е	K	G	Н	I	J	L1	OD	ID	d
MLP 20	182	229	123	100	100	311	260	46.5	153	6	52	25	22
MLP-23	191	229	123	100	100	315.5	264.5	46.5	153	6	64.5	35	22
MLP-25	194	229	123	100	100	325	274	46.5	153	6	77	47.8	22
MLP-30	225	271	149	125	125	432.5	357	56	186.5	8	77.5	47.8	28
MLP-36	260.5	271	149	125	125	438.5	363	56	186.5	8	77.5	59.5	28
MLP-55	240	271	149	125	125	443.5	368	56	186.5	8	77.5	66	28
MLP-60	245	271	149	125	125	447.5	372	56	186.5	8	109	72.2	28

MOTOR-REDUCER DIMENSION TABLE

Motor Series	А	В
002	715	285
003	715	285
102	745	285
172	865	325
202	910	320
272	915	320
282	930	320

Motor Sorioo	MLP-20				
Motor Series	A	В			
002	715	285			
003	715	285			
282	930	320			

MODELS AND CAPACITIES

Model	Flow (m³/h)	Pressure (bar)	Motor Power (kW)	Recommended Cycle (min-1)	Flow in Each Cycle (L/rev)	Input-Output Connection Dimensions		
	1-2	20	3,0					
	1-3	15	2,2					
MLP-20	1-3	12	1,5	100-450	0,15	DIN SMS DEBIT		
	1-3	9	1,1					
	1-3	5	0,75					
	2-5	20	4,0					
	2-5	15	3,0					
MLP-23	2-5	12	2,2	100-450	0,212	DIN, SMS, DF, RJT		
	2-5	9	1,5			, ,		
	2-5	5	1,1					
	3-7	15	5,5					
MLP-25	3-7	10	4,0	100-450	0 298	2"-DN50		
	3-7	7	3,0		0,200	DIN, SMS, DF, RJT		
	3-7	4	2,2					
	5-10	20	7,5					
MLP-30	5-10	12	5,5	100-400	0.496	2"-DN50		
	5-10	8	4,0		-,	DIN, SMS, DF, RJT		
	5-10	4	3,0					
	6,5-13	18	7,5					
MLP-36	6,5-13	10	5,5	100-400	0.631	& 2" -DN50		
	6,5-13	7	4,0		-)	DIN, SMS, DF, RJT		
	6,5-13	3	3,0					
	7-14	12	7,5					
MLP-55	7-14	9	5,5	100-400 0,705		2,5"-DN65		
	7-14	6	4,0			DIN, SMS, DF, RJT		
	7-14	3	3,0					
	8-16	10	7,5					
MLP-60	8-16	9	5,5	100-400	0,778	3"-DN80		
	8-16	5	4,0			DIN, SIMS, DF, RJT		
	8-16	3	3,0					
	15-31	18	15					
MLP-70	15-31	12	11	100-360	1,791	3"-DN80		
	15-31	9	7,5			DIN, SIVIS, DF, KJ I		
	15-31	5	5,5					
	20-40	15	15					
MLP-80	20-40	10	11	100-360	1,824	3"-DN80		
	20-40	1	7,5			DIIN, SIVIS, DF, NJ I		
	20-40	4	5,5					
	25-50	10	11	100.000	0.000	4"-DN100		
IVILP-100	25-50	6	7,5	100-360	2,299	DIN, SMS, DF, RJT		
	25-50	3	5,5					
	31-62	10	15	100.000	0.000	5"-DN125		
MLP-125	31-62	1	11	100-360	2,922	DIN, SMS, DF, RJT		
	31-62	4	7,5					

INFORMATION ON THE WORKING PRINCIPLE

As the rotor rotates, the volume in the pump inlet line increases and the fluid is dragged into the pump. Fluid between the rotors and the pump inner wall is transported to the pump outlet.

MIT lobe pumps are designed to provide reliable performance, trouble-free operation and superior energy efficiency for demanding applications. These hygienic pumps meet the high standards of low damage to the product and low pressures.

MAINTENANCE AND REPAIR

Thanks to its compact structure, MIT lobe pumps can be operated in the field and in a very short time and easily.

Before the pump is serviced, the electrical connections must be disconnected from the pump motor.

After this operation, the pump can be serviced and repaired.

- The maintenance and replacement of the lobes can be made with the pump and line connections and the dismantling of the front cover bolts without dismantling the coupling connections between the motor and the pump.
- In this section, the lobes can be easily removed and cleaned and maintained.
- The front body must be removed for replacement of the packing. The dismantling process of the body can be done in a simple way.
- The oil reservoir in the gear unit is replaced by opening the oil drain plug periodically. This will increase the life of the gears.
- After necessary cleaning, all parts are removed and reassembled. When switching on the pump, electrical connections must be made according to the direction of rotation of the motor.

HYGIENIC CENTRIFUGAL PUMP

MIT HYGIENIC CENTRIFUGAL PUMPS

MIT hygienic centrifugal pumps have all the features necessary for the transfer of all liquids in milk, fruit juices, alcoholic and non-alcoholic beverages, beer, pharmaceuticals and chemical industry. Made of 304 or 316L quality stainless steel. Thanks to its high wall thickness, it has a long service life against corrosion wear.

Thanks to the special design of the lid and fan, friction is reduced and non-hygiene blind spots are eliminated. The convenience of the special structure of the fluid in the pump speed can reach the highest level. In addition, it allows easy control and cleaning applications in a short time with its easy disassembly feature.

Pump Technical Specifications

Max. Flow: 100 m³/h Max. Discharge Head: 70 m Max. Operating Temperature: 120 °C (30 mins. in CIP/SIP applications) Max. Cycle: 3600 d/dk.

Materials

Pump Body and Fan: AISI 316L / AISI 304 Gasket: EPDM (conformity to food - FDA) Leak-proofing: Meachanical Seal

NODE: m9/h Mette (KW) Contraction Dimensions MP-03 1 13 0.55 DN26 / DN25 MP-03 7 10 0.55 DN26 / DN25 MP-06 8 10 0.75 DN40 / DN40 MP-05 8 10 0.75 DN40 / DN40 MP-06 3 27 1.5 DN50 / DN40 MP-10 5 26 1.5 DN50 / DN40 MP-13 27 2.2 DN50 / DN50 MP-15 10 2.4 2.2 DN50 / DN50 MP-20-1 11 2.8 3.0 DN50 / DN50 MP-20-1 10 30 4.0 DN50 / DN50 MP-20-2 10 38 5.5 DN66 / DN50 MP-20-2 10 38 7.5 DN65 / DN50 MP-20-2 10 46 11.0 DN65 / DN50 MP-30 30 36 7.5 DN86 / DN50 MP-30 10	Modol	Cap	acity	Motor Power	Input-Output		
MP-03 1 13 0.65 DN26 / DN26 3 12 0.75 DN40 / DN40 MP-05 8 10 0.75 DN40 / DN40 MP-05 8 10 0.75 DN40 / DN40 MP-16 7 25 1.5 DN50 / DN40 MP-17 25 1.5 DN50 / DN40 MP-16 7 2.2 DN50 / DN50 MP-15 10 2.4 2.2 MP-20-1 11 2.8 3.0 MP-20-1 11 2.8 3.0 MP-20-2 5 10 36 5.5 MP-30 30 4.0 5.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 30 46 11.0 DN65 / DN50 MP-30 65 11.0 DN80 / DN65 DN80 / DN65 MP-30 66 11.5	Moder	m³/h	m ³ /h Metre		Connection Dimensions		
NP-05 7 10 0.65 DB2 / DB2 MP-06 8 10 0.75 DN40 / DN40 17 3 0.75 DN40 / DN40 3 277 1.5 DN50 / DN40 MP-10 5 26 1.5 DN50 / DN40 11 24 1.5 DN50 / DN50 MP-15 10 24 2.2 DN50 / DN50 MP-16 10 24 2.2 DN50 / DN50 MP-20-1 11 28 3.0 DN50 / DN50 10 30 4.0 DN50 / DN50 DN50 / DN50 MP-20-2 10 38 5.5 DN65 / DN50 MP-30 30 7.5 DN65 / DN50 DN50 / DN50 MP-30 10 41 7.5 DN65 / DN50 MP-30 30 45 11.0 DN50 / DN50 MP-30 10 55 11.0 DN80 / DN65 MP-30 60 15 DN80 / DN65 16		1	13	0,55			
MP-05 3 12 0.75 DN40 / DN40 17 3 0.75 0.75 3 27 1.5 0.75 MP-10 5 26 1.5 0.75 7 26 1.5 0.75 0.75 MP-10 5 26 1.5 0.75 MP-15 10 24 2.2 0.75 MP-15 10 24 2.2 0.75 MP-20-1 11 28 3.0 0.75 10 30 4.0 4.0 0.75 MP-20-2 10 38 5.5 0.765 MP-30 30 36 7.6 0.76 MP-30 30 36 7.6 0.76 MP-30 30 36 11.0 0.76 MP-30 29 5.5 11.0 0.76 MP-30 30 45 11.0 0.76 MP-31 15 1.70	IVIP-03	7	10	0,55			
MP-05 8 10 0.75 DN40 / DN40 17 3 0.75 0.75 0.75 3 27 1.5 0.75 0.75 10 26 1.5 DN50 / DN40 11 24 1.5 0.75 MP-15 10 24 2.2 MP-15 10 24 2.2 MP-20-1 11 28 3.0 MP-20-1 10 30 4.0 35 19 4.0 36 30 3.0 MP-20-2 10 38 5.5 MP-20-2 10 38 5.5 MP-30 20 55 11.0 MP-30 30 36 7.5 0.065 / DN50 MP-31 10 45 11.0 0.065 / DN50 MP-32 55 11.0 0.065 / DN50 1.5 MP-35-1 25 50 15 0.0 MP-35-2		3	12	0,75			
Inf 3 0.75 3 27 1.5 5 26 1.6 11 24 1.6 11 24 1.6 3 27 2.2 MP-15 10 24 2.2 5 30 3.0 MP-20-1 11 28 3.0 MP-20-1 11 28 3.0 MP-20-1 11 28 3.0 MP-20-1 10 36 7.5 MP-20-2 10 38 5.5 MP-30 30 36 7.5 MP-30 30 36 7.5 MP-30 30 36 11.0 30 45 11.0 10 30 45 11.0 10 30 45 11.0 10 40 51 15 15 MP-35-2 52 50 15 60 50	MP-05	8	10	0,75	DN40 / DN40		
3 27 1.5 5 26 1.5 7 25 1.5 11 24 1.5 10 24 2.2 10 24 2.2 10 24 2.2 11 28 3.0 3 27 2.2 10 29 13 2.2 11 28 3.0 11 28 3.0 11 28 3.0 11 28 3.0 11 28 3.0 11 28 3.0 11 28 3.0 11 28 3.0 10 38 5.5 10 40 7.5 10 53 11.0 10 53 15 28 52 15 10 53 15 29 73 22.0 11		17	3	0,75			
MP-10 5 26 1.5 DN50 / DN40 11 24 1.5 15 MP-15 10 24 2.2 10 24 2.2 DN50 / DN50 29 13 2.2 DN50 / DN50 MP-15 5 30 3.0 MP-20-1 11 28 3.0 10 35 19 4.0 35 19 4.0 MP-20-1 5 5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 20 55 11.0 DN80 / DN65 MP-30 25 50 11.0 DN80 / DN65 MP-30 65 11.0 DN80 / DN65 MP-30 65 11.0 DN80 / DN65 MP-30 65 11.0 DN80 / DN65		3	27	1,5	-		
// /// // // /// /// // /// // /// // /// /// // // // // // // // // // <th <="" th=""> <th <="" th=""> // <t< td=""><td>MP-10</td><td>5</td><td>26</td><td>1,5</td><td>DN50 / DN40</td></t<></th></th>	<th <="" th=""> // <t< td=""><td>MP-10</td><td>5</td><td>26</td><td>1,5</td><td>DN50 / DN40</td></t<></th>	// <t< td=""><td>MP-10</td><td>5</td><td>26</td><td>1,5</td><td>DN50 / DN40</td></t<>	MP-10	5	26	1,5	DN50 / DN40
Initial Initial <t< td=""><td></td><td>/</td><td>25</td><td>1,5</td><td> , -</td></t<>		/	25	1,5	, -		
MP-15 3 21 22 DN50 / DN50 10 29 13 2.2 DN50 / DN50 MP-20-1 11 28 3.0 DN50 / DN50 MP-20-1 11 28 3.0 DN50 / DN50 MP-20-2 5 40 5.5 DN50 / DN50 MP-20-2 10 38 5.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 25 50 11.0 DN80 / DN65 MP-35-1 25 50 11.0 DN80 / DN65 MP-35-2 52 50 15 DN80 / DN65 30 65 18.5 60 16.5 30 81 22.0 51 51 MP-40-1 59 73			24	1,5			
INF-IO 10 24 2.2 DNS0 / DNS0 10 30 3.0 3.0 3.0 11 28 3.0 3.0 3.0 10 30 4.0 3.0 3.0 35 19 4.0 3.0 3.0 MP-20-2 10 38 5.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 20 55 11.0 DN80 / DN65 DN65 / DN50 MP-30 30 45 11.0 DN80 / DN65 10 53 15 DN80 / DN65 DN80 / DN65 10 52 50 15 GR DN80 / DN65 10 82 22.0 30 81 22.0 30 65 18.5 GR 71 76 22.0 66	MD 15	10	21	2,2			
10 10 12 11 28 3.0 11 28 3.0 10 30 4.0 35 19 4.0 35 19 4.0 35 19 4.0 35 19 4.0 36 10 38 5.5 MP-20-2 10 38 5.5 MP-30 30 36 7.5 10 41 7.5 MP-30 30 36 7.5 20 55 11.0 30 45 11.0 30 45 11.0 30 45 11.0 10 53 15 40 51 15 40 51 15 60 50 18.5 10 82 22.0 39 80 22.0 51 76 22.0 68	IVIE-10	29	13	2,2			
MP-20-1 11 28 3.0 DN50 / DN50 MP-20-2 5 40 5.5 MP-20-2 10 38 5.5 MP-20-2 10 38 5.5 MP-30 30 36 7.5 MP-30 30 36 7.5 MP-30 20 55 11.0 MP-35:1 20 55 11.0 30 45 11.0 10 50 25 50 11.0 MP-35:1 30 45 11.0 10 52 50 15 10 25 11.0 10 10 52 15 10 10 82 20 15 60 50 18.5 10 10 82 22.0 15 60 50 18.5 10 11 72 22.0 10 11 72 22.0		5	30	3.0			
MP-20-1 10 30 4,0 35 19 4,0 35 MP-20-2 10 38 5,5 MP-20-2 10 38 5,5 MP-30 30 36 7,5 MP-30 30 36 7,5 MP-30 30 36 7,5 20 55 11,0 MP-35-1 25 50 11,0 30 45 11,0 0 8 MP-35-1 10 53 15 0 29 52 15 0 0 0 40 51 15 0 0 0 0 30 61 22,0 10 62 20 0		11	28	3.0	-		
35 19 4.0 6 40 5.5 40 29 5.6 40 29 5.6 40 29 5.6 40 29 5.6 40 29 5.6 MP-30 30 36 7.5 20 55 11.0 49 30 7.5 20 55 11.0 25 50 11.0 50 25 11.0 50 52 11.0 50 52 15 40 53 15 40 51 15 52 50 18.5 30 65 18.5 30 80 22.0 61 72 22.0 63 71 22.0 65 72 22.0 66 71 22.0 65 72 22.0	MP-20-1	10	30	4 0	DN50 / DN50		
S 40 5.5 DN65 / DN50 40 29 5.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 30 36 7.5 DN65 / DN50 MP-30 49 30 7.5 DN65 / DN50 MP-30 20 55 11.0 DN65 / DN50 MP-35-1 20 55 11.0 DN65 / DN50 30 45 11.0 DN65 / DN50 DN65 / DN50 MP-35-1 30 45 11.0 DN65 / DN50 40 51 11.0 DN80 / DN65 DN80 / DN65 40 51 15 DN80 / DN65 DN80 / DN65 64 46 15 DN80 / DN65 DN80 / DN65 30 81 22.0 S DN80 / DN65 51 76 22.0 S DN80 / DN65 66 72 22.0 S S S 66 72 22.0 <		35	19	4.0			
MP-20-2 10 38 5.5 DN65 / DN50 40 29 5.5 10 10 41 7.5 MP-30 30 36 7.5 DN65 / DN50 10 MP-30 30 36 7.5 DN65 / DN50 10 MP-35-1 25 50 11.0 DN80 / DN65 10 50 25 11.0 DN80 / DN65 10 DN80 / DN65 MP-35-1 50 25 11.0 DN80 / DN65 DN80 / DN65 MP-35-2 52 50 115 DN80 / DN65 DN80 / DN65 MP-35-2 52 50 115 DN80 / DN65 DN80 / DN65 MP-35-2 52 50 115 DN80 / DN65 DN80 / DN65 MP-40-1 82 22.0 51 76 22.0 DN80 / DN65 MP-40-1 59 73 22.0 DN80 / DN65 DN80 / DN65 MP-40-1 66 71 22.0 G50 76		5	40	5,5			
40 29 5,5 MP-30 10 41 7,5 30 36 7,5 49 30 7,5 MP-30 20 55 11,0 20 55 11,0 0 21 50 11,0 0 25 50 11,0 0 30 45 11,0 0 50 25 11,0 0 10 53 15 0 29 52 15 0 40 51 15 0 64 46 15 0 60 50 18,5 0 60 50 18,5 0 61 72 22,0 0 61 72 22,0 0 61 72 22,0 0 66 72 22,0 0 61 72 20,0 0 <	MP-20-2	10	38	5,5	DN65 / DN50		
MP-30 10 41 7,5 DN65 / DN50 49 30 7,5 DN65 / DN50 49 30 7,5 DN65 / DN50 MP-35-1 20 55 11,0 30 45 11,0 DN80 / DN65 50 25 11,0 DN80 / DN65 50 25 16 DN80 / DN65 40 51 15 DN80 / DN65 64 46 15 DN80 / DN65 60 50 18,5 DN80 / DN65 61 72 22,0 39 80 22,0 65 72 22,0 65 72 22,0 61 72 22,0 65 76 30,0 70 67 30,0 30,0 30,0 30,0 50		40	29	5,5			
MP-30 30 36 7,5 DN65 / DN50 49 30 7,5 10 20 55 11,0 0 30 45 11,0 0 50 25 11,0 0 50 25 11,0 0 10 53 15 0 29 52 15 0 40 51 15 0 64 46 15 0 0 60 50 18,5 0 0 60 50 18,5 0 0 60 50 18,5 0 0 60 50 18,5 0 0 61 72 22,0 0 0 65 72 22,0 0 0 66 71 22,0 0 0 66 71 22,0 0 0 60 76		10	41	7,5			
49 30 7,5 20 55 11,0 25 50 11,0 30 45 11,0 30 25 11,0 50 25 11,0 50 25 11,0 50 25 15 29 52 15 40 51 15 64 46 15 60 50 18,5 60 50 18,5 60 50 18,5 60 50 18,5 71 82 22,0 51 76 22,0 51 76 22,0 65 72 22,0 65 72 22,0 68 71 22,0 68 71 22,0 65 78 30,0 50 76 30,0 60 76 30,0 60	MP-30	30	36	7,5	DN65 / DN50		
20 55 11.0 25 50 11.0 30 45 11.0 50 25 11.0 50 25 11.0 10 53 15 29 52 15 40 51 15 64 46 15 30 65 18,5 60 50 18,5 60 50 18,5 60 50 18,5 30 81 22,0 39 80 22,0 51 76 22,0 51 76 22,0 65 72 22,0 65 72 22,0 65 72 22,0 66 71 22,0 65 72 22,0 66 76 30,0 50 76 30,0 50 76 30,0 60 <td></td> <td>49</td> <td>30</td> <td>7,5</td> <td></td>		49	30	7,5			
MP-35-1 25 50 11.0 30 45 11.0 50 25 11.0 50 52 11.0 29 52 15 40 51 15 40 51 15 64 46 15 30 65 18,5 60 50 18,5 60 50 18,5 60 50 18,5 60 50 18,5 60 50 18,5 30 81 22,0 39 80 22,0 51 76 22,0 65 72 22,0 65 72 22,0 65 72 22,0 65 72 22,0 65 76 30,0 40 80 30,0 50 76 30,0 50 76 30,0		20	55	11,0			
MP-40-1 30 45 11,0 Driver product MP-40-1 50 25 11,0 53 15 MP-40-2 52 52 15 52 50 15 MP-40-2 52 50 15 55 16 56 MP-40-2 65 18,5 56 18,5 56 56 MP-40-2 10 82 22,0 51 76 22,0 30 81 22,0 51 76 22,0 51 MP-40-1 59 73 22,0 51 76 22,0 65 72 22,0 65 72 22,0 51 71 70 22,0 71 70 22,0 71 70 22,0 71 70 22,0 71 70 22,0 71 70 22,0 71 70 22,0 70 67 30,0 70 67 30,0 70 67 30	MP-35-1	25	50	11,0	DN80 / DN65		
50 25 11,0 10 53 15 29 52 15 40 51 15 52 50 15 64 46 15 30 65 18,5 60 50 18,5 60 50 18,5 60 50 18,5 30 81 22,0 31 76 22,0 51 76 22,0 51 76 22,0 65 72 22,0 65 72 22,0 65 72 22,0 66 71 22,0 68 71 22,0 60 72 30,0 60 72 30,0 60 72 30,0 60 76 30,0 60 76 30,0 70 67 30,0 60		30	45	11,0			
10 53 15 29 52 15 40 51 15 52 50 15 64 46 15 30 65 18,5 60 50 18,5 60 50 18,5 60 50 18,5 60 50 18,5 30 81 22,0 31 76 22,0 51 76 22,0 61 72 22,0 65 72 22,0 65 72 22,0 66 71 22,0 61 72 30,0 60 72 30,0 60 72 30,0 60 72 30,0 60 72 30,0 60 72 30,0 60 72 30,0 60 76 30,0 90		50	25	11,0			
10 15 40 51 15 40 51 15 52 50 15 64 46 15 30 65 18,5 60 50 18,5 60 50 18,5 60 50 18,5 60 81 22,0 39 80 22,0 51 76 22,0 51 76 22,0 61 72 22,0 65 72 22,0 65 72 22,0 66 71 22,0 61 72 22,0 65 78 30,0 50 76 30,0 50 76 30,0 50 76 30,0 70 67 30,0 70 67 30,0 70 67 30,0 90 60		10	53	15	-		
MP-35-2 10 15 15 52 50 15 DN80 / DN65 64 46 15 16 30 65 18,5 16 60 50 18,5 16 60 50 18,5 16 60 50 18,5 16 30 81 22,0 22,0 39 80 22,0 16 51 76 22,0 16 61 72 22,0 16 68 71 22,0 16 68 71 22,0 16 71 70 22,0 16 71 70 22,0 16 60 72 30,0 16 70 67 30,0 16 60 72 30,0 16 70 67 30,0 16 65 63 30,0 16		29	52	15	-		
MP-35-2 32 50 15 DN80 / DN65 64 46 15 30 65 18,5 60 50 18,5 60 50 18,5 30 81 22,0 39 80 22,0 39 76 22,0 51 76 22,0 65 72 22,0 65 72 22,0 65 72 22,0 66 71 22,0 67 71 70 22,0 68 71 22,0 68 71 22,0 69 76 30,0 40 80 30,0 50 76 30,0 60 72 30,0 70 67 30,0 60 72 30,0 70 67 30,0 85 63 30,0 90		40	51	15			
04 46 13 30 65 18,5 60 50 18,5 10 82 22,0 39 80 22,0 39 80 22,0 51 76 22,0 61 72 22,0 65 72 22,0 66 71 22,0 68 71 22,0 68 71 22,0 65 72 22,0 65 72 22,0 66 71 22,0 66 71 22,0 71 70 22,0 65 72 30,0 60 72 30,0 50 76 30,0 60 72 30,0 70 67 30,0 85 63 30,0 85 63 30,0 90 60 30,0	IVIF-30-2	52	50	15			
100 10,5 60 50 18,5 10 82 22,0 30 81 22,0 39 80 22,0 51 76 22,0 61 72 22,0 65 72 22,0 65 72 22,0 68 71 22,0 68 71 22,0 68 71 22,0 68 71 22,0 65 72 22,0 66 72 30,0 71 70 22,0 68 71 22,0 69 71 70 80 60 30,0 45 78 30,0 50 76 30,0 70 67 30,0 70 67 30,0 85 63 30,0 90 60 30,0 93 <td< td=""><td></td><td>30</td><td>40</td><td>18.5</td><td>-</td></td<>		30	40	18.5	-		
10 82 22,0 30 81 22,0 39 80 22,0 51 76 22,0 61 72 22,0 65 72 22,0 65 72 22,0 65 72 22,0 68 71 22,0 68 71 22,0 68 71 22,0 67 72 22,0 68 71 22,0 68 71 22,0 68 71 20 71 70 20 40 80 30,0 45 78 30,0 50 76 30,0 70 67 30,0 70 67 30,0 90 60 30,0 90 60 30,0 93 58 30,0 95 55 30,0		60	50	18.5	-		
NP-40-1 NP-40-2 NP-40-2 <t< td=""><td></td><td>10</td><td>82</td><td>22.0</td><td></td></t<>		10	82	22.0			
39 80 22,0 51 76 22,0 51 76 22,0 61 72 22,0 65 72 22,0 65 72 22,0 68 71 22,0 68 71 22,0 71 70 22,0 71 70 22,0 40 80 30,0 50 76 30,0 50 76 30,0 60 72 30,0 70 67 30,0 70 67 30,0 90 60 30,0 90 60 30,0 90 60 30,0 90 60 30,0 90 60 30,0 93 58 30,0 95 55 30,0		30	81	22.0	-		
MP-40-1 51 76 22,0 61 72 22,0 65 72 22,0 68 71 22,0 68 71 22,0 71 70 22,0 71 70 22,0 71 70 22,0 40 80 30,0 45 78 30,0 50 76 30,0 60 72 30,0 60 72 30,0 70 67 30,0 85 63 30,0 90 60 30,0 90 60 30,0 93 58 30,0 95 55 30,0		39	80	22,0	-		
MP-40-1 59 73 22,0 61 72 22,0 65 72 22,0 68 71 22,0 71 70 22,0 71 70 22,0 40 80 30,0 45 78 30,0 50 76 30,0 60 72 30,0 60 72 30,0 70 67 30,0 70 67 30,0 70 67 30,0 90 60 30,0 90 60 30,0 90 60 30,0 93 58 30,0 95 55 30,0		51	76	22,0	-		
61 72 22,0 65 72 22,0 68 71 22,0 71 70 22,0 40 80 30,0 45 78 30,0 50 76 30,0 60 72 30,0 70 67 30,0 70 67 30,0 70 67 30,0 90 60 30,0 93 58 30,0 95 55 30,0	MP-40-1	59	73	22,0	DN80 / DN65		
65 72 22,0 68 71 22,0 71 70 22,0 40 80 30,0 45 78 30,0 50 76 30,0 60 72 30,0 70 67 30,0 70 67 30,0 70 67 30,0 90 60 30,0 90 60 30,0 93 58 30,0 95 55 30,0		61	72	22,0			
68 71 22,0 71 70 22,0 40 80 30,0 45 78 30,0 50 76 30,0 60 72 30,0 70 67 30,0 70 67 30,0 85 63 30,0 90 60 30,0 93 58 30,0 95 55 30,0		65	72	22,0			
71 70 22,0 40 80 30,0 45 78 30,0 50 76 30,0 60 72 30,0 70 67 30,0 80 64 30,0 85 63 30,0 90 60 30,0 93 58 30,0 95 55 30,0		68	71	22,0			
40 80 30,0 45 78 30,0 50 76 30,0 60 72 30,0 70 67 30,0 80 64 30,0 85 63 30,0 90 60 30,0 93 58 30,0 95 55 30,0		71	70	22,0			
45 78 30,0 50 76 30,0 60 72 30,0 70 67 30,0 70 67 30,0 80 64 30,0 85 63 30,0 90 60 30,0 93 58 30,0 95 55 30,0		40	80	30,0	-		
50 76 30,0 60 72 30,0 70 67 30,0 70 67 30,0 80 64 30,0 90 60 30,0 93 58 30,0 95 55 30,0		45	78	30,0	-		
60 72 30,0 70 67 30,0 80 64 30,0 85 63 30,0 90 60 30,0 93 58 30,0 95 55 30,0		50	/6	30,0	-		
MP-40-2 NP-40-2 NP-40-2 <t< td=""><td></td><td>60</td><td>12</td><td>30,0</td><td>4</td></t<>		60	12	30,0	4		
IVIE-40-2 60 64 30,0 DN80 / DN65 85 63 30,0 90 60 30,0 90 60 30,0 93 58 30,0 95 55 30,0 90 90 90		///	64	30,0			
85 85 50,0 90 60 30,0 93 58 30,0 95 55 30,0	IVIM-40-2	00 85	62	30,0			
00 00 00 00 93 58 30,0 95 55 30,0		00	60	30,0	-		
95 55 30,0		03 03			-		
		95	55	30.0	4		
		100	50	30,0	-		

PERFORMANCE CURVES

BLOWER

MIT BLOWERS

Blowers are installation equipment that provides the transfer of air in the emitted environment at high or low pressure and rotates the fan with the force received from the motor.

The fan in the blowers rotates by vacuuming the air in the suction section, the air trapped inside is then pushed towards the outlet side. Blowers are often used to move air.

MIT branded blowers offer the most reliable service for your application areas in terms of size, performance and technology.

WHY SHOULD I USE MIT BLOWERS?

MIT centrifugal blowers have a maintenance-free, highly efficient fan, electric motor and various mounting (horizontal and vertical) shapes.

They provide high pressure and vacuum. Can produce oilfree air. Easy to install and maintenance-free AC motor.

ADVANTAGES OF MIT CENTRIFUGAL BLOWERS

MIT branded blowers are designed to provide the best service to our valued customers with our expert engineer staff. We offer you the most efficient blower with the advantage of MIT brand below.

- It provides a maximum flow rate of 2500 m³/ h.
- Creates a maximum pressure of 570 mbar.
- High temperature operation (maximum: 70-80 °C).
- Provides a quiet working environment (50-85 dBA).
- Environment-friendly thanks to the lack of oil-free operation and no pollution level.
- Vibration is minimized with dynamic balance adjustment.
- Easy installation. Suitable for horizontal and vertical installation.
- Swedish SKF or Japanese NSK bearings are used, ensuring efficient and long-lasting use.
- Provides trouble-free operation for 3-5 years under normal conditions.

WHAT ARE THE TYPES OF BLOWERS?

Single Stage Blowers

Single-stage blowers are available in a range of 55-1050 m³/h flow rates, 0-460 mbar pressures and 0.25 to 5.5 kW range of motor power.

Double Stage Blowers

Double-stage blowers are available in a range of 88-2050 m 3 /h flow rates, 0-570 mbar pressures and 0,7-25 kw.

HOW TO SELECT A BLOWER?

The most important information needed for blower selection (for air) is listed as follows.

- Air flow rate required (m³/h, Nm³/h).
- The positive pressure of the blower to be used for air transfer (such as mbar, bar, mSS).
- Vacuum value of the blower to be used for vacuum (mbar, bar, etc.).
- Ambient temperature.

PERFORMANCE TABLE

Each blower has different operating values depending on the motor power.

						∆p mBar	0	50	100	150	200	250	300	350	400	450	500	550
Model	Electric Motor (kW)	Outlet Line	Weight (kg)	Stage	Max. Vacuum mBar	Max. Pressure mBar					Flow	Rate	e (m³	/h)				
B1TT-102	0,25	1 1/4"	7	Single	-100	100	55	25										
B2TT-104	0,40	1 1/4"	11	Single	-120	130	80	50	28									
B2CC-207	0,7	1 1/4"	14	Double	-210	240	88	68	54	41	30							
B3TT-105	0,55	1 1/4"	12	Single	-120	130	100	77	50									
B3TT-107	0,7	1 1/4"	13	Single	-150	170	100	77	50	20								
B4TT-107	0,7	1 1/2"	14	Single	-120	120	145	111	80									
B4TT-108	0,85	1 1/2"	15	Single	-160	160	145	111	80	55								
B4TT-113	1,3	1 1/2"	16	Single	-170	200	145	111	80	55	30							
B4CC-216	1,6	1 1/2"	24	Double	-280	280	150	135	120	105	93	78						
B4CC-222	2,2	1 1/2"	27	Double	-330	440	150	135	120	105	93	78	64	50	35			
B5TT-116	1,6	2"	21	Single	-200	190	210	178	145	110								
B5TT-122	2,2	2"	25	Single	-220	270	210	178	145	110	87	58						
B5CC-230	3,0	2"	39	Double	-340	410	230	205	182	167	148	130	115	100	88			
B5CC-240	4,0	2"	43	Double	-390	490	230	205	182	167	148	130	115	100	88	60		
B6TT-122	2,2	2"	27	Single	-230	250	270	240	200	160	118							
B6TT-130	3,0	2"	32	Single	-270	310	270	240	200	160	118	78						
B7TT-122	2,2	2"	29	Single	-210	200	318	278	238	200								
B7TT-130	3,0	2"	34	Single	-270	290	318	278	238	200	170	140						
B7TT-140	4,0	2"	42	Single	-290	330	318	278	238	200	170	140	110	75				
B7TC-130	3,0	2"	43	Single	-220	220	420	355	295	244	200							
B7TC-140	4,0	2"	43	Single	-260	310	420	355	295	244	200	160	120					
B7CC-222	2,2	2"	42	Double	-220	210	320	300	282	264	250							
B7CC-230	3,0	2"	47	Double	-280	260	320	300	282	264	250	235						
B7CC-243	4,3	2"	53	Double	-360	380	320	300	282	264	250	235	218	202				
B7CC-255	5,5	2"	70	Double	-440	500	320	300	282	264	250	235	218	202	184	174	158	
B7CC-275	7,5	2"	77	Double	-440	570	320	300	282	264	250	235	218	202	184	174	158	140
B8TT-155	5,5	2 1/2"	65	Single	-300	320	530	465	420	380	348	305	275					
B8TT-175	7,5	2 1/2"	68	Single	-320	380	530	465	420	380	348	305	275	240	180			
B8TC-175	7,5	2 1/2"	74	Single	-270	260	700	615	550	490	448	390						
B8CC-275	7,5	2 1/2"	87	Double	-400	400	520	480	455	440	410	390	370	350	330			
B8CC-2110	11	2 1/2"	127	Double	-280	370	900	800	720	650	580	515	440	350				
B9TT-1250	12,5	4"	132	Single	-280	270	1050	980	900	830	770	695	695					
B9TT-1850	18,5	4"	140	Single	-340	460	1050	980	900	830	770	695	695	630	520	480		
B9CC-2225	25,0	4"	235	Double	-310	280	2050	1850	1800	1750	1500	1420						

WORKING PRINCIPLE OF MIT CENTRIFUGAL BLOWER

Blowers increase the pressure of the absorbed gas by a series of vortex motions formed by the centrifugal movement of the impeller. When the impeller is rotating, the channels in the impeller push the air forward by the centrifugal movement and a helical movement occurs. During this movement, the gas is continuously compressed along the channel and the pressure increases linearly. The pressurized air is transferred from the outlet duct of the blower to the installation to be used.

WHAT ARE THE BLOWER USAGE AREAS?

Blowers are used in various processes such as food, transportation, granite carrier.

Blowers, other than vacuum pumps are effectively used in food washing, transport equipment, powder granur conveyor, suction equipment, industrial dust extraction, paper handling, degassing, bottle filling machines, automatic filling machines, paper cutting industry, printing paper handling process, dust removal equipment production, car washing, treatment plants, whirlpool, bottle drying, vegetable fruit washing and heating installations.

AIR DIAPHRAGM PUMP

MIT DIAPHRAGM TRANSFER PUMPS

Diaphragm pumps which work with air can be used in various areas in industrial works. It works as the same principle with lift and force pumps. Diaphragm pumps works with air instead of electricity motors with help of a compression motor that supplies demand of the pumps air according to its own flow rate and pressure values.

Due to pumps non-electric motor it has an ex-proof feature. For this reason this pump can serve under oil, solvent and many other flammable material containing work spaces. Besides having deep vacuum and dry working features this pumps flow rate and pressure can be easily adjustable.

Considering all these reasons air working pumps can serve at various areas of industry like transfer, circulation, injection, filling.

MIT 160 SERIES DIAPHRAGM PUMPS

MIT ac diaphragm transfer pumps have muttiple applications which give opportunity to be used at high flow rated and parti-culated fluids. With differing diaphragm adjustments according to flows MIT air diaphragm transfer pumps offers a longer life-time.

Areas of Usage

MIT diaphragm pumps can easily transfer the fluid with connecting to the bottom of the tank.

TECHNICAL FEATURES					
Flow	16 l/min.				
Pump Inlet-Outlet	1/4"				
Operating Pressure (max.)	7 bar				
Head (max.)	70 m				
Sucking	6 m				
Operating Temperature	0 ~ +100 °C				
Air Inlet	1/4"				
Particle Permeability	1 mm				
Weight	1,5 kg				

MATERIAL FEATURES					
Body	Polypropylene (PP)				
	Santoprene				
Diaphragms	Teflon				
	EPDM				
	Viton				
	Buna-N				

Neoprene

MIT 550 SERIES DIAPHRAGM PUMPS

MIT 550 series offers the user to choose the most effective application for various chemicals with and aluminum body.

Areas of Usage

MIT diaphragm pumps can also be used as submerged pumps. To do this, air release pipe should go above the water level to keep pumps exhaust for releasing the air.

TECHNICAL FEATURES

	Plastic Body	Metal Frame
Flow	55 l/min.	55 l/min.
Pump Inlet-Outlet	3/4"	3/4"
Operating Pressure (max.)	7 bar	7 bar
Head (max.)	70 m	70 m
Sucking	6 m	6 m
Operating Temperature	0 ~ +100 °C	-18 ~ +100 °C
Air Inlet	1/4"	1/4"
Particle Permeability	3 mm	3 mm
Weight	4,2 kg	4,9 kg

MATERIAL FEATURES

Body	Polypropylene (PP) Aluminium
	Santoprene
	Teflon
Diaphragma	EPDM
Diaphragins	Viton
	Buna-N
	Neoprene

MIT 550 (3/4") Plastic and Metal Pumps Performance Curve

MIT 1500 SERIES DIAPHRAGM PUMPS

MIT air diaphragm pumps are commonly used at marine industry. Bilge water discharge, sanding, scrape and rusted wastes are also in the line of work of this pump. Air diaphragm pumps are also used at transferring and storing most of the chemicals which used at dye houses and press machines paint circulations which used at textile industry. With the color and press capacity of the machine a different pump can be used for every color.

MATERIAL FEATURES

	Polypropylene (PP)
Body	Aluminium
	Stainless Steel
	Nodular Cast Iron
	Santoprene
	Teflon
Diaphrogmo	EPDM
Diaphragms	Viton
	Buna-N
	Neoprene

MIT 4000 SERIES DIAPHAM PUMPS

MIT air diaphragm pumps are very useful at cleaning oil and sludge which occurred at storage basins of petrol products. These pumps can be used for any type of chemical, glue, solvents, paint or inks transfer and circulation. A MIT air diaphragm pump doesn't require any electrical engine due to this reason it has a resistance to explosion and combustion which called the Exproof feature. It can be used in transferring and storing paint and glue materials. For water based fluids nitrile caoutchouc diaphragm can be used and for solvent based fluids PTFE diaphragm can be used.

MIT 4000 (1 1/2") Plastic and Metal Pumps Performance Curve

TECHNICAL FEATURES

	Plastic Body	Metal Body		
Flow	400 l/min.	400 l/min.		
Pump Inlet-Outlet	1 1/2"	1 1/2"		
Operating Pressure (max.)	7 bar	7 bar		
Head (max.)	70 m	70 m		
Sucking	6 m	6 m		
Operating Temperature	0 ~ +100 °C	-18 ~ +100 °C		
Air Inlet	3/4"	3/4"		
Particle Permeability	6 mm	6 mm		
Weight	20,5 kg	25 kg		

MATERIAL FEATURES

Body	Polypropylene (PP)		
	Aluminium		
	Stainless Steel		
	Nodular Cast Iron		
Diaphragms	Santoprene		
	Teflon		
	EPDM		
	Viton		
	Buna-N		
	Neoprene		

MIT 5600 SERIES DIAPHAM PUMPS

MIT air diaphragm pumps are used in transferring acid and chemical based sludge and dewatering sedimentation sludge with pressing it to filter at water treatment plants. Transferring animal based waste in slaughtering facilities, storing and bottling process at fish oil industry can be referred work areas of MIT air diaphragm pumps.

MIT 5600 (2") Plastic and Metal Pumps Performance Curve

TECHNICAL FEATURES							
	Plastic Body	Metal Body					
Flow	560 l/min.	560 l/min.					
Pump Inlet-Outlet	2"	2"					
Operating Pressure (max.)	7 bar	7 bar					
Head (max.)	70 m	70 m					
Sucking	6 m	6 m					
Operating Temperature	-18 ~ +100 °C	-18 ~ +100 °C					
Air Inlet	3/4"	3/4"					
Particle Permeability	6 mm	6 mm					
Weight	30 kg	32 kg					

MATER	FEAT	'I IR	FS
			LJ

	Polypropylene (PP)		
	Aluminium		
DOUY	Stainless Steel		
	Nodular Cast Iron		
Diaphragms	Santoprene		
	Teflon		
	EPDM		
	Viton		
	Buna-N		
	Neoprene		

MIT 8900 SERIES DIAPHAM PUMPS

MIT air diaphragm pumps are used in ceramic industry for transferring sludge and mold filling purpose. Beside this it can also be used at sealing sector with circulation and spraying purpose.

TECHNICAL FEATURES							
	Plastic Body	Metal Body					
Flow	890 l/min.	890 l/min.					
Pump Inlet-Outlet	3"	3"					
Operating Pressure (max.)	ax.) 7 bar 7 bar						
Head (max.)	70 m	70 m					
Sucking	6 m	6 m					
Operating Temperature	-18 ~ +100 °C	-18 ~ +100 °C					
Air Inlet	3/4"	3/4"					
Particle Permeability	6 mm	6 mm					
Weight	49 kg	51 kg					

MATERIAL FEATURES

Body	Polypropylene (PP)		
	Aluminium		
	Stainless Steel		
	Nodular Cast Iron		
Diaphragms	Santoprene		
	Teflon		
	EPDM		
	Viton		
	Buna-N		
	Neoprene		

MIT 8900 (3") Plastic and Metal Pumps Performance Curve

MIT HJ SERIES DIAPHRAGM PUMPS

MIT HJ Series hygienic pumps are used in industries like food, pharmaceutical and cosmetics. Clamp type connection is used. 316 L stainless steel is used for frame material.

MIT HJ Series hygienic pumps does not thins the fluid its transferring and not effecting the chemical state of the fluid makes this pumps indispensable for transferring and storing milk, yogurt, cream, mustard, ketchup, mayo type of sensitive materials.

For transferring concentrated materials as chocolate, marmalade, air transfer pumps are suitable which are designed based on food regulations.

MATERIAL FEATURES						
Body	SS 316 L					
Diaphragms	Santoprene					
	Teflon					
	EPDM					
	Neoprene					

TECHNICAL FEATURES										
Model		Flow (lt/dk)	Pump Inlet-Outlet (inch)	Operating Pressure (max.bar)	Head (max.m)	Sucking (m)	Operating Temperature °C	Air Inlet	Particle Permeabilit (mm)	Weight (kg)
MIT HJ 550	3/4"	55	3/4"	7	70	6	-18 ~ +100	1/4"	3	6,5
MIT HJ 1500	1"	150	1"	7	70	6	-18 ~ +100	1/2"	4	12,0
MIT HJ 4000	1 1/2"	400	1 1/2"	7	70	6	-18 ~ +100	3/4"	6	26,0
MIT HJ 5600	2"	560	2"	7	70	6	-18 ~ +100	3/4"	6	31,0
MIT HJ 8900	3"	890	3"	7	70	6	-18 ~ +100	3/4"	8	65,0

ACID PUMP

magneto

MAG DRIVE PUMPS

Mag drive pumps have a particular sealless design that is suitable for pumping corrosive and dangerous liquids thanks to the high chemical resistance and absence of leakage and emissions. The structure is really simple and it requires a very reduced maintenance with consequent save in terms of repairing and spare parts costs during the pump life. The external magnet placed on the drive shaft transmits the motion to the internal magnet connected to the impeller which rotates and moves the fluid through the pump.

Advantages

- 1. This special hermetic pump design prevents any leakage of fluid and fugitive emissions that, in case of chemicals, corrosive liquids, explosive and flammable fluids, could be very dangerous for people dealing with the pump and for the environment. So mag drive pumps allow to follow strict environmental and safety objectives required by many regulations. We shouldn't forget also that some liquids could be very expensive and their loss due to a seal failure may cause high unnecessary extra costs.
- 2. Mag drive pumps are very reliable and need very low maintenance thanks to their simple design. With normal working conditions these pumps can work without any kind of repair for more than a decade so their life cost is highly reduced. Nevertheless it's always better to check o-rings and bearings every one/two years just to be sure that there is no wearing.
- 3. The coupling is very easy because there is no need for a motor/pump alignment.

SEAL-LESS MAG DRIVE CENTRIFUGAL PUMPS

In seal-less magnetic drive centrifugal pumps, the external magnet is directly connected to the motor shaft and it transmits the torque to the internal magnet.

The magnetic field created produces a rotation without physical contact between the parts so the impeller spins and moves the fluid. The rear casing is placed between the two magnet joints and it hermetically closes the hydraulic part from the motor.

Magneto can supply three different models of mag drive centrifugal pumps:

MG PP / PVDF

- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 45 m³/h.
- Head up to 33 mlc.
- Injection molded parts.

MGXL

- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 130 m³/h.
- Head up to 48 mlc.
- Pump head machined from a block.

MG SS316

- Metallic pumps made in stainless steel AISI316.
- Capacity up to 32 m³/h.
- Head up to: 24 mlc.

	MATERIALS IN CONTA	ACT WITH THE LIQUID	
Port Number / Description		Centrifugal Pumps	
Part Number / Description	MG PP / PVDF	MGXL	MG SS316
1 - Pump Head	PP or PVDF	PP or PVDF	AISI 316
2 - O-Ring	EPDM or Viton	EPDM or Viton	EPDM or Viton
3 - Casing Thrust Bush	Ceramic Al ₂ O ₃ + EPDM or Viton	Ceramic $AI_2O_3 + EPDM$ or Viton	PTFEC
4 - Shaft	Ceramic Al ₂ O ₃ %99,7	Ceramic Al ₂ O ₃ 99,7%	HASTELLOY – C276
5 - Bearings	PTFEC	PTFEC	PTFEC
6 - Impeller	PP or PVDF	PP or PVDF	AISI 316
7 - Internal Magnet	PP or PVDF + NdFeB	PP or PVDF + NdFeB	AISI 316 + SmCo
8 - Rear Casing	PP or PVDF	PP or PVDF	AISI 316

Magneto

THERMOPLASTIC MAG-DRIVE CENTRIFUGAL PUMPS

Mag drive centrifugal pumps series MG PP/ PVDF are made of thermoplastic materials (Polypropylene and PVDF) and are suitable for high corrosive liquids. Thanks to the innovative mag drive system, pumps model MG PP/PVDF reduce the risks of leakage and emissions and the maintenance costs. The transmission of the motion occurs through magnetic joints without any mechanical seal and this design guarantees the maximum safety and efficiency. The pumped liquid has to be clean and without solids in suspension. High torque magnetic coupling NdFeB standard. Suitable for high corrosive liquids.

Technical Features

Materials available: PP / PVDF. Materials in contact with the liquid; Casing and impeller: PP/PVDF;

- O-ring: EPDM (Standard for PP pumps);
- Viton (Standard for PVDF pumps);

• Static Shaft: Al2O3 99,7 %; Bushing PTFEC.

Max flow: 45 m3/h; Max head 33 mlc. Temperature: PP: max 70°C – PVDF: max 90°C. Max viscosity: 200 cSt.

Motor gücü: Modele göre 0,12 kW ile 7,5 kW arasında değişir. Bağlantı çapı: Modele göre 1" ile 3" arasında değişmektedir. Pressure rating: NP 6 at 20°C.

Performance Curves 50 Hz – 2900 RPM

THERMOPLASTIC MAG-DRIVE CENTRIFUGAL PUMPS

Optional:

• Dry-running protection.

Typical Applications:

- High corrosive liquids.
- Toxic, noxious and carcinogenic liquids.

Main Features

Mag drive centrifugal pumps series MGXL are made of thermoplastic materials (Polypropylene or PVDF) and, thanks to their strong and resistant structure, they are suitable for high corrosive fluids and heavy duty applications. The pump casing is machined from a solid block for a great resistance in terms of pressure and temperature and the transmission of the motion occurs through magnetic joints without any mechanical seal. This magnetic drive system guarantees the maximum safety and efficiency reducing risks of leakage and emissions.

- Materials available: PP / PVDF.
- Materials in contact with the liquid: Pump head and impeller PP or PVDF; O-Ring EPDM (standard for PP pumps); Viton (standard for PVDF pumps); Shaft Al₂O₃ 99,7%; Bushing PTFEC.
- Max capacity: 130 m³/h.
- Max head: 48m.
- Max temperature: PP: 70°C -- PVDF: 90°C.
- Flanged or threaded connections according to the pump size.
- Strong structure, maximum resistance to corrosive liquids.

Performance Curve 50 Hz – 2900 RPM

magneto

METALLIC MAG-DRIVE CENTRIFUGAL PUMPS

Standard:

• Threaded in and out connections.

Optional:

- Pump available in other materials (HC 276; Titanium).
- Atex version
- Explosion proof motor.
- Flanges available.
- Dry-running protection.
- Baseplate.
- Overload switch.

Performance Curves 50 Hz – 2900 RPM

Main Features

Mag drive centrifugal pumps series MG SS are made of AISI 316 or, on request, of other metallic materials (such as HASTELLOY or TITANIUM) and are suitable for hydrocarbons, solvents and dangerous liquids. Thanks to the innovative mag drive design, pumps model MG SS reduce the risks of leakage and emissions and the maintenance costs. The transmission of the motion occurs through magnetic joints without any mechanical seal. This design guarantees the maximum safety and efficiency. The pumped liquid has to be clean and without solids in suspension. Pumps series MG SS 316 are also available in ATEX version for zone 1 and 2 (pump model EM-C).

- Materials available: AISI 316;
- Materials in contact with the liquid: casing and impeller: stainless steel AISI 316; O-Ring: EPDM/VITON; Bushing: PTFE/CARBON; Shaft: Hastelloy C276.
- Max flow: 32 m³/h; max head: 24 mlc.
- Max temperature: 160° C.
- Max viscosity: 200 cSt.
- Pressure rating: NP 10 at 20° C.

THERMOPLASTIC SELF-PRIMING MAG DRIVE CENTRIFUGAL PUMPS

Standard:

• Gas threaded in and out connections.

Optional:

• Flanges connection.

Main Features

MG-SP pumps combine the typical features of ours mag drive centrifugal pumps with the selfpriming capability. At sea level, these pumps can prime up to 6 meters in a very short time. MG-SP pumps can be made of Polypropylene (PP) or PVDF and assure high resistance and chemical compatibility with a large range of corrosive and dangerous fluids. Thanks to the innovative sealless magnetic drive system, pumps model MG-SP guarantee the maximum safety and efficiently reducing risks of leakage and emissions in the environment and the maintenance costs. The pumped liquid has to be clean, without solids in suspension.

- Materials available: PP or PVDF;
- Materials in contact with the liquid: Casing and Impeller: PP/PVDF; O-Ring: EPDM (standard for PP pumps) / VITON (standard for PVDF pumps); Static Shaft: Al2O3 99.7%; Bearing: PTFEC.
- Capacity up to 26 m³/h.
- Head up to 21 m.
- Max temperature: PP: 70° C PVDF: 90° C.
- Max viscosity: 200 cSt.
- Pressure rating: PN6 at 20° C.
- Self-priming up to 6m at sea level.

Performance Curves 50 Hz – 2900 RPM

Magneto

SEAL-LESS MAG DRIVE TURBINE PUMPS

In seal-less magnetic drive turbine pumps, the external magnet is directly connected to the motor shaft and it transmits the torque to the internal magnet.

The magnetic field created produces a rotation without physical contact between the parts and the turbine spins and moves the fluid. The rear casing is placed between the two magnet joints and it hermetically closes the hydraulic part from the motor.

Mangeto can supply three different models of mag drive turbine pumps:

MGT

- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 9 m3/h.
- Head up to 50 mlc.

MGT-SP

- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 7 m³/h.
- Head up to 25 mlc.
- Machined from a block.
- Self-priming up to 3 m.

MGT-SS

- Metallic pumps made in stainless steel AISI316.
- Capacity up to 7 m³/h.
- Head up to: 80 mlc.

	MATERIALS IN CONTA	ACT WITH THE LIQUID	
Dout Number / Deceription		Turbine Pumps	
Part Number / Description	MGT	MGT-SP	MGT-SS
1 - Pump Head	PP or PVDF	PP or PVDF	AISI 316
2 - O-Ring	EPDM or Viton	EPDM or Viton	EPDM or Viton
3 - Front and Rear Disc	PP or PVDF	PP or PVDF	PTFEC
4 - Shaft + Ring	Ceramic Al ₂ O ₃ %99,7	Ceramic Al ₂ O ₃ %99,7	HASTELLOY – C276
5 - Bearing	PTFEC	PTFEC	PTFEC
6 - Impeller	PVDF	PVDF	AISI 316
7 - Internal Magnet	PP or PVDF + NdFeB	PP or PVDF + NdFeB	AISI 316 + SmCo
8 - Rear Casing	PP or PVDF	PP or PVDF	AISI 316

THERMOPLASTIC MAG-DRIVE REGENERATIVE TURBINE PUMPS

Standard:

- Gas threaded In and Out connections.
- Static shaft in high purity ceramic.
- Chemical resistant PTFE/carbon sleeve bearings.
- High torque magnetic coupling.
- Direct starting motor.

Optional:

- DIN or ANSI 150 flanges available.
- Baseplate.
- Dry-running protection.

Performance Curves 50 Hz – 2900 RPM

Mag drive regenerative turbine pumps series MGT are made of thermoplastic materials (polypropylene-PP and PVDF) and are suitable for pumping high corrosive liquids. Thanks to the innovative mag drive system, pumps model MGT reduce risks of leakage and emissions and the maintenance costs. The transmission of the motion occurs through magnetic joints without any mechanical seal. This sealless design guarantees the maximum safety and efficiency. The pumped liquid has to be clean and without solids in suspension.

Main Features

- Materials available: PP / PVDF.
- Plastic injection moulded.
- Materials in contact with the liquid: Casing and rear casing: PP/PVDF; Impeller: PVDF;

O-ring: EPDM (standard for PP pumps); Viton (standard for PVDF pumps); Shaft: Al₂O₃ 99,7%; Bearing: PTFEC.

- Max flow: 9 m³/h; Max head 50 mlc.
- Temperature: PP: max 70° C PVDF: max 90° C.
- Max viscosity: 40 cPs.
- Pressure rating: NP 6.
- It handles up to 20% entrained gas.
- MGT pump resists cavitation.

magneto

THERMOPLASTIC MAG-DRIVE REGENERATIVE TURBINE PUMPS SELF-PRIMING

Standard:

- Gas threaded in and out connections.
- Static shaft in high purity ceramic.
- Chemical resistant PTFE/carbon sleeve bearings.
- High torque magnetic coupling.
- Direct starting motor.

Optional:

- ANSI 150 flanges available.
- Baseplate.

Performance Curves 50 Hz – 2900 RPM

26 24 Min Flow 22 20 18 16 14 H (m) 12 10 8 MGT-SP 09 6 MGT-SP 05 MGT-SP 07 4 2 0 0,5 1,5 2 2,5 3,5 5,5 1 3 4 4,5 5 6 6.5 7

MGT-SP pumps can prime up to 5 m with water at ambient temperature. The casing is made from a PP solid machined block and the impeller in PVDF for maximum chemical resistance. The casing is machined from a solid block. The impeller in PVDF is self-balanced to eliminate thrust bearing wear and it is separate to minimize the maintenance costs. This kind of pump offers maximum resistance withstanding also external corrosion. It handles up to 20% entrained gas and resists cavitation.

Main Features

- Max flow: 6 m³/h; max head 28 mlc.
- Max temperature: PP: 70° C PVDF: 90° C.
- High torque magnetic coupling.
- Chemical resistant PTFE/carbon sleeve bearings.
- Static shaft in high purity ceramic.
- Direct starting motor.

METALLIC MAG-DRIVE REGENERATIVE TURBINE PUMPS

Standard:

- Static shaft in HC 276.
- Chemical resistant PTFE/Carbon sleeve bearings standard.
- High torque magnetic coupling.
- Direct starting motors.

Optional:

- ANSI 300 flanges available.
- Atex version.
- Explosion proof motor.
- Dry-running protection.
- Baseplate.

Main Features

Mag drive regenerative turbine pumps series MGT-SS are made of AISI 316 or, if requested, of other metallic materials (HASTELLOY or TITANIUM) and are suitable for solvents, hydrocarbons, dangerous and inflammable liquids. Thanks to the innovative mag drive system, pumps model MGT-SS reduce the risks of leakage and emissions and maintenance costs. The transmission of the motion occurs through magnetic joints without any mechanical seal. This design guarantees the maximum hermetic safety and efficiency. The pumped liquid has to be clean and without solids in suspension. Pumps series MGT-SS are also available in ATEX version for zone 1 and 2 (pump model EM-T).

- High head / low flow capability minimizes by-pass requirements.
- Materials available: AISI 316;
- Materials in contact with the liquid: Casing and impeller: stainless steel AISI 316; O-ring EPDM/VITON; Bushing: PTFEC; shaft: Hastelloy C276.
- Max flow 7 m3/h; max head 80 mlc.
- Max Temperature: 160° C.
- Pressure Rating NP 25 at 20° C.
- Impeller design handles up to 20% entrained gas.
- Ideal for pumping liquefied gas.

Performance Curves 50 Hz – 2900 RPM

Magneto

SEAL-LESS MAG DRIVE VANE PUMPS

In seal-less magnetic drive vane pumps, the external magnet is directly connected to the motor shaft and it transmits the torque to the internal magnet. The magnetic field created produces a rotation without physical contact between the parts and the rotor spins. The vanes inside the rotor slide in and out of their seat and they move the fluid. The rear casing is placed between the two magnet joints and it hermetically closes the hydraulic part from the motor.

Mangeto can supply two different models of volumetric pumps:

MGP

- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 1000L/h.
- Pressure up to 5 bar.

MGP-S

- Metallic pumps made in stainless steel AISI316.
- Capacity up to 2100L/h.
- Pressure up to: 13 bar.
- Dry self-priming.

	MATERIALS IN CONTACT WITH THE	E LIQUID
Part Number / Deparimin	Vane F	Pumps
Part Number / Description	MGT	MGT-SP
1 - Pump Body + Cover	PP or PVDF	AISI 316
2 - O-Ring	EPDM or Viton	EPDM or Viton
3 - Flanges Stator Vanes + Pins	PVDF+ Grafit	Graphite
4 - Rotor Shaft	PVDF	AISI 316
5 - Internal Magnet	PP or PVDF + NdFeB	AISI 316 + SmCo
6 - Rear Casing	PP or PVDF	AISI 316

THERMOPLASTIC MAG-DRIVE ROTARY VANE PUMPS

System Pressure:

• 8 bar.

Standard:

- High torque magnetic coupling.
- Direct starting motor.

Optional:

- Flanges available.
- Dry-running protection.
- Baseplate.

Performance Curves 50 Hz – 1450 RPM

1000 900 800 2° Range 700 600 Q (L/h) 500 400 300 1° Range 200 100 0 0 0,5 1.5 2 2,5 3 3,5 4 4,5 5 5.5 H (bar)

Main Features

Mag drive rotary vane pumps series HPP-HPF are made of thermoplastic materials (PP/PVDF) and are suitable for corrosive liquids, alkalis, toxic, noxious and carcinogenic fluids. Thanks to the innovative mag drive system, pumps model HPP-HPF reduce the risks of leakage and the maintenance costs. HPP-HPF pumps are useful for low flow and high head applications such as Pilot Plants and Sampling.

- PP, PVDF.
- Materials in contact with the liquid: Casing, end cover, internal magnet and rear casing: PP/PVDF; O-ring: EPDM (standard for PP pumps); VITON (standard for PVDF pumps).
- Graphite Stator.
- Rotor shaft: PVDF.
- Max flow: 1000L/h.
- Max pressure: 5 bar.
- Temperature: PP: max 70° C PVDF: max 90° C.

magneto

METALLIC ROTARY VANE MAG-DRIVE PUMPS DRY SELF-PRIMING

Standard:

- High torque magnetic coupling.
- Direct starting motor.

Optional:

- Flanges available.
- Dry-running protection.
- Baseplate.
- Atex version (Pump mode. EM-P).
- Explosion proof motor.

Main Features

Rotary vane mag drive pumps series HTP are made of AISI 316 or, if requested, of other metallic materials (Titanium and Hastelloy) and are suitable for hydrocarbons, solvents, heat transfer oils, refrigerants, cryogenics and radioactive liquids. Thanks to the innovative mag drive system, pumps model HTP reduce the risks of leakage and emissions and the maintenance costs. HTP pumps are useful for low flow and high head applications such as Pilot Plants, Sampling and Flushing of mechanical seals. Especially designed for thin non-lubricating liquids and/or high differential pressure. Pumps series HTP are also available in ATEX version for zone 1 and 2 (pump model EM-P).

- Materials available: AISI 316.
- Materials in contact with the liquid: Pump body, end cover and rotor: AISI 316; O-ring: EPDM/VITON; carbon graphite stator.
- Max flow: 2100L/h.
- Max pressure: 13 bar.
- Temperature range: from 70 °C to + 200 °C.
- Max viscosity: 2000 cPs.
- System Pressure: 25 bar.

Performance Curves 50 Hz – 1450 RPM

MECHANICAL SEAL CENTRIFUGAL PUMPS

Mechanical seal centrifugal pumps are the right solution for applications involving solids in the liquid because their design with open impeller allows to pump dirty liquids and fluids with high viscosity. The seal in mechanical seal pumps is composed by a static ring and a rotating ring placed on the pump shaft which is directly coupled to the motor shaft. The two surfaces sliding together need to be lubricated and the seal lubricant is the liquid itself that is being pumped.

Mangeto can supply the following model of mechanical seal pump:

MS

- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 58 m³/h.
- Head up to 38 mlc.
- Two different kind of mechanical seal available: lip seal for model MS 95-10, internal PTFE bellow mechanical seal for all the other pump sizes.

	MATERIALS IN CONTACT WITH THE LIQUID
Port Number / Description	Mechanical Seal Pumps
Part Number / Description	MS
1 - Pump Head	PP or PVDF
2 - O-Ring	EPDM or Viton
3 - Mechanical Seal	$PTFE + Al_2O_3$
4 - Cover	PP or PVDF
5 - Impeller and Impeller Nut	PP or PVDF + NdFeB

magneto

MECHANICAL SEAL CENTRIFUGAL PUMPS

Standard:

- Gas threaded in and out connections.
- Direct starting motor

Optional:

- Flanges available.
- Dry-running protection.
- Baseplate.

Performance Curves 50 Hz - 2900 RPM

Main Features

Centrifugal pumps series MS with mechanical seal are made of thermoplastic materials (Polypropylene and PVDF) and are suitable for high corrosive liquids containing solids in suspension. The seal of pumps MS size 95-10 is guaranteed by a special elastomeric lip seal, while all the other pump sizes (from size 110 to 170) are equipped with an internal PTFE bellows mechanical seal (sic/ceramic), which is manufactured by Ekin Endüstriyel.

- Materials available: PP / PVDF.
- Flow up to 60 m³/h; Head up to 38 mlc.
- Temperature: PP: max 70 ° C PVDF: max 90 °C.
- Max viscosity: 200 cSt.
- Pressure rating: NP 6 at 20 °C.
- Lip seal for pumps size 95-10; internal PTFE bellows mechanical seal for all the other sizes.
- Suitable for high corrosive liquids containing solids in suspension.

VERTICAL CENTRIFUGAL PUMPS

Vertical centrifugal pumps are suitable for installations with pump immersed directly in the tank. Mangeto can supply the following models of vertical pumps:

VS

- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 40 m³/h.
- Head up to 22 mlc.
- Monobloc pump with semi open-impeller.
- Suitable for high corrosive liquids with solids in suspension.
- Maximum length 1000 mm.

VSXL

- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 57 m³/h.
- Head up to 39 mlc.
- Centrifugal pump with coupling and semi open-impeller.
- Suitable for high corrosive liquids with solids in suspension.
- Maximum column length 2000 mm.

MG-V

- Vertical magnetic drive pumps.
- Thermoplastic pumps made in PP or PVDF.
- Capacity up to 23 m³/h.
- Head up to 20 mlc.
- Column length: 320 mm.

VS-SS

- Vertical centrifugal cantilever pumps.
- Made in AISI316.
- Capacity up to 24 m³/h.
- Head up to 26 mlc.
- Especially designed for the production of PCBs.

	MATERIALS IN CONTACT WITH THI	ELIQUID
Part Number / Description	Vertical	Pumps
Fait Number / Description	VS	VSXL
1 - Pump Head	PP or PVDF	PP or PVDF
2 - O-Ring	EPDM or Viton	EPDM or Viton
3 - Shaft Covering	PP	PP
4 - Cover	PP or PVDF	PP or PVDF
5 - Bushing	PTFEC	PTFEC
6 - Wear Bushing	Al ₂ O ₃	Al ₂ O ₃
7 - Impeller	PP or PVDF	PP or PVDF
8 - Column	PP or PVDF	PP or PVDF

Magneto

VERTICAL CENTRIFUGAL PUMPS

• Centrifugal monoblock pump.

- Materials available: PP, PVDF.
- Max flow: 40 m³/h;
- Max head: 22 mlc.
- Temperature: PP: max 70 °C; PVDF: max 90 °C.
- Suitable for high corrosive liquids containing solids in suspension.
- Length of the column: from 500 to 1000 mm.

Standard:

• Threaded in and out connections.

Optional:

- Dry-running protection.
- Flanges available.
- Suction strainer.

Performance Curves 50 Hz – 2900 RPM

VERTICAL CENTRIFUGAL PUMPS

Centrifugal pump with coupling.

- Materials available: PP, PVDF.
- Max flow: 57 m³/h; Max head: 39 mlc.
- Temperature: PP: max 70 °C; PVDF: max 90 °C.
- Suitable for high corrosive liquids containing solids in suspension.
- Length of the column: from 500 to 2000 mm.

Standard:

• Threaded in and out connections.

Optional:

- Dry-running protection.
- Flanges available.
- Suction strainer.

Performance Curves 50 Hz – 2900 RPM

Magneto

VERTICAL MAG DRIVE CENTRIFUGAL PUMPS

Optional:

- Dry running protection.
- Also available with bracket suitable for NEMA motors.

Performance Curves 50 Hz – 2900 RPM

Main Features

Vertical mag drive centrifugal pumps series MG-V are made of thermoplastic materials (Polypropylene and PVDF) and are suitable to handle chemicals and corrosive liquids. This kind of pump has been designed for a vertical submerged installation, providing high reliability for intank and sump applications. MG-V are sealless magnetic drive pumps without any kind of labyrinth or mechanical seal. The column of the pump is hermetically sealed and it allows complete isolation of the motor, the extension shaft and external magnet of the pump from the process liquid.

- Materials available: PP /PVDF.
- Materials in contact with the liquid: Casing and impeller: PP/PVDF; O-Ring: EPDM (standard for PP pumps); VITON (standard for PVDF pumps); Shaft: Al₂O₃ 99,7%; Bushing: PTFEC.
- Max flow: 22 m³/h.
- Max head 20 mlc.
- Temperature: PP: max 70 °C PVDF: max 90 °C.
- Compact design.
- Column length: 320 mm.

CENTRIFUGAL VERTICAL CANTILEVER PUMPS

Performance Curves 50 Hz – 2900 RPM

Features

- Materials available: AISI 316 or Titanium.
- Max flow: 24 m³/h.
- Max head: 26 mlc.
- Fume labyrinth seal. A combined system of labyrinth, rings and PTFE lip seal guarantees tightness against gas and vapours.
- Impeller with low axial thrust.
- Suitable for corrosive liquids containing solids.
- Especially designed for use in the production of printed circuit boards (PCB). AISI 316 version is suitable for potassium permanganate applications at 90 °C.
- Titanium version is suitable for "Black Oxide".
- Two different types available: VS-SS 1 for tank transfer and VS-SS 2 used as a boosting pump. VS-SS 2 model should be installed in the same tank where VS-SS 1. This provides a tight system which prevents any leaks.

magneto

ATEX PUMPS

For pumping applications in potentially explosive atmospheres Mangeto offers ATEX certified pumps suitable for zone 1 II 2G c Tx and zone 2 II 3G c Tx.

All our Atex pumps comply with the technical and safety requirements of ATEX directive 2014/34/EU.

The Atex Pumps Available

Only for ATEX zone 2. (See pumps model MG PP/PVDF, MGT and MGP) For Atex zone 1 and 2. (See pump model MG SS316)

For Atex zone 1 and 2. (See pump model MGT-SS)

For Atex zone 1 and 2. (See pump model MGP-S)

ACCESSORIES

Dry-Running Protection

The installation of W 01 Emirel prevents expensive damage to pumps because it avoids the dryrunning working, the closed discharge and the blocked suction. We recommend the use of this instrument to unload tank truck or every other application when it's not certain if the liquid is constantly present in the pipes. This device checks constantly the active power of the motor, that is the medium value of the instantaneous power absorbed by the pump, through the reception of information about the voltage and about the voltage variations. Through a set point and a timer, which are adjustable, it's possible to set the minimum power and the triggering time of the device.

If the power goes under the established value, the pump stops and the device must be switched on again manually.

In case of continuous intervention on the apparatus, check the presence of liquid and/or the correct functioning of the plant to find the cause of working of the device.

Flanges

Mangeto pumps are usually supplied with threaded connections. Upon request we can also supply DIN or ANSI flanges for thermoplastic pumps (flat stub + free flange) and welded DIN or ANSI flanges for AISI316 pumps.

AIROO ROOTS BLOWERS

HG SERIES BLOWER

HG series blower is a positive displacement type of machine used to convey air and gas and is widely used in almost every industry, we has earned a high reputation in pressure and vacuum area by HG series three lobe roots blower for it's high efficiency and energy saving.

With a broad capacity range up to 10,000 m3/hr and pressure range up to 1 bar for pressure performance and capacimbty range up to 10,000 m3/hr and vacuum range up to -500 mbar for vacuum performance, easy handling and quieter operation, HG series blower has been used for delivering air for sewage water treatment plant, shrimp aquaculture plant, cement plant, power plant, metallurgy, mining plant, sugar plant, pneumatic conveying system, and delivering gas for biogas power plant, landfili gas (LFG) power plant, gas extraction plants, oil and gas refinery plant, steel plant, foundry plant, metallurgical plant, chemical Plant etc.

HG Three Lobe Roots Blower Pressure Performance Table

Qs: Inlet Air Flow Rate (m³/min) La: Bar Power (kW) Po : Motor Power (kW)

		10	0 ml	Bar	20	0 ml	Bar	30	0 ml	Bar	40	0 ml	Bar	50	0 ml	Bar	60	0 ml	Bar	70	0 ml	Bar	80	0 mE	Bar	90	0 ml	Bar	100)0 m	Bar	Motor
Model	RPM	Qs	La	Po	Pole																											
	1450	1.12	0.7	1.1	0.88	1.0	1.5	0.75	1.2	1.5	0.63	1.5	2.2	0.5	1.8	2.2																4
	2000	1.76	1.0	1.5	1.42	1.4	2.2	1.33	1.7	2.2	1.23	2.1	3	1.19	2.5	3	1.00	2.9	4													4
	2500	2.34	1.2	1.5	2	1.7	2.2	1.82	2.1	3	1.72	2.6	4	1.6	3.1	4	1.54	3.6	5.5	1.43	4	5.5	1.38	4.5	5.5							2
HG-50	3000	2.93	1.4	2.2	2.59	1.9	3	2.41	2.5	3	2.21	3.1	4	2.06	3.7	5.5	1.93	4.2	5.5	1.88	4.8	7.5	1.8	5.4	7.5	1.7	6	7.5				2
	3500	3.51	1.6	2.2	3.17	2.2	3	2.99	2.9	4	2.79	3.6	5.5	2.64	4.2	5.5	2.51	4.9	7.5	2.38	5.6	7.5	2.25	6.2	7.5	2.18	6.9	11	2.1	7.6	11	2
	4000	4.1	1.8	2.2	3.76	2.5	3	3.58	3.3	4	3.38	4.1	5.5	3.23	4.8	7.5	3.1	5.6	7.5	2.96	6.3	7.5	2.84	7.1	11	2.77	7.9	11	2.7	8.6	11	2
	4500	4.68	2	3	4.34	2.8	4	4.16	3.7	5.5	3.95	4.5	5.5	3.81	5.4	7.5	3.68	6.3	7.5	3.53	7.1	11	3.42	8	11	3.35	8.8	11	3.29	9.7	15	2
	2000	2.98	1.4	2.2	2.46	2.1	3	2.13	2.7	4	1.78	3.4	4	1.53	4.0	5.5	1.33	4.6	5.5													4
	2500	3.97	1.8	2.2	3.45	2.6	3	3.12	3.4	4	2.77	4.2	5.5	2.52	5.0	7.5	2.32	5.8	7.5													2
110.05	3000	4.95	2.2	3	4.43	3.1	4	4.1	4.1	5.5	3.75	5.1	7.5	3.5	6	7.5	3.3	7	11	3.14	8	11	3	8.9	11	2.89	9.9	15	2.82	10.8	15	2
HG-65	3500	5.93	2.5	3	5.41	3.7	5.5	5.08	4.8	7.5	4.73	5.9	7.5	4.48	7	11	4.28	8.1	11	4.12	9.3	11	3.98	10.4	15	3.87	11.5	15	3.8	12.6	15	2
	4000	6.91	2.9	4	6.39	4.2	5.5	6.06	5.5	7.5	5.71	6.7	11	5.46	8	11	5.26	9.3	11	5.1	10.6	15	4.96	11.9	15	4.85	13.1	18.5	4.78	14.4	18.5	2
	4500	7.89	3.2	4	7.73	4.7	5.5	7.04	6.1	7.5	6.69	7.6	11	6.44	9	11	6.24	10.5	15	6.08	11.9	15	5.94	13.3	18.5	5.83	14.8	18.5	5.76	16.2	22	2
	2000	6.01	2.3	3	5.51	3.5	5.5	5.17	4.7	5.5	4.88	5.9	7.5	4.65	7.0	11	4.46	8.2	11													4
	2300	7.12	2.7	4	6.63	4.0	5.5	6.29	5.4	7.5	6.01	6.8	11	5.78	8.1	11	5.59	9.5	11													2
	2500	7.86	2.9	4	7.38	4.4	5.5	7.05	5.9	7.5	6.76	7.3	11	6.53	8.8	11	6.34	10.3	15	6.18	11.8	15	6.04	13.3	18.5	5.93	14.8	18.5	5.83	16.3	22	2
	2800	8.98	3.3	4	8.5	4.9	7.5	8.17	6.6	11	7.89	8.2	11	7.67	9.9	15	7.48	11.5	15	7.31	13.2	18.5	7.18	14.8	18.5	7.06	16.5	22	6.95	18.1	22	2
ПG-00	3000	9.72	3.6	5.5	9.25	5.4	7.5	8.92	7.1	11	8.64	8.9	11	8.42	10.7	15	8.23	12.5	15	8.07	14.3	18.5	7.93	16	18.5	7.81	17.8	22	7.71	19.6	30	2
	3300	10.8	4	5.5	10.4	5.9	7.5	10.1	7.9	11	9.77	9.8	15	9.55	11.8	15	9.36	13.8	18.5	9.2	15.7	18.5	9.06	17.7	22	8.94	19.6	30	8.83	21.6	30	2
	3500	11.5	4.2	5.5	11.1	6.3	7.5	10.8	8.3	11	10.5	10.4	15	10.3	12.5	15	10.1	14.6	18.5	9.95	16.6	22	9.81	18.7	22	9.69	20.8	30	9.59	22.9	30	2
	3800	12.7	4.6	5.5	12.2	6.8	11	11.8	9.1	11	11.6	11.3	15	11.4	13.6	18.5	11.2	15.8	18.5	11.1	18.1	22	10.9	20.3	30	10.8	22.6	30	10.7	24.8	30	2
	2000	9.13	3.2	4	8.43	5.0	7.5	7.93	6.7	11	7.51	8.5	11	7.17	10.3	15	6.88	12.1	15													4
	2300	10.8	3.7	5.5	10.1	5.8	7.5	9.62	7.8	11	9.21	9.9	15	8.87	11.9	15	8.59	14.0	18.5													2
	2500	11.9	4.1	5.5	11.2	6.3	7.5	10.8	8.6	11	10.3	10.8	15	10	13	15	9.73	15.2	18.5	9.48	17.5	22	9.26	19.7	30	9.08	21.9	30	8.91	24.1	30	2
HG-100	2800	13.6	4.7	5.5	12.9	7.2	11	12.5	9.7	15	12	12.2	15	11.7	14.7	18.5	11.4	17.2	22	11.2	19.7	30	11	22.2	30	10.8	24.7	30	10.6	27.2	37	2
110-100	3000	14.7	5.1	7.5	14.1	7.8	11	13.7	10.4	15	13.2	13.1	18.5	12.8	15.8	18.5	12.6	18.5	22	12.3	21.2	30	12.1	23.8	30	11.9	26.5	37	11.7	29.2	37	2
	3300	16.4	5.5	7.5	15.7	8.5	11	15.4	11.4	15	14.9	14.4	18.5	14.6	17.3	22	14.3	20.2	30	14	23.2	30	13.8	26.1	30	13.6	29.1	37	13.5	32	37	2
	3500	17.5	5.8	7.5	16.9	8.9	11	16.5	12.1	15	16	15.2	18.5	15.7	18.3	22	15.4	21.4	30	15.2	24.5	30	14.9	27.7	37	14.8	30.8	37	14.6	33.9	45	2
	3800	19.2	6.3	7.5	18.5	9.7	15	18.2	13	15	17.7	16.4	22	17.4	19.8	30	17.1	23.2	30	16.9	26.6	37	16.7	30	37	16.5	33.3	45	16.3	36.7	45	2

AIRCO

Marial	DDM	10	0 mE	Bar	20	00 mE	Bar	30	00 mE	Bar	40	00 mE	lar	50	00 mB	Bar	60	0 mE	Bar	70	00 mE	Bar	80	10 mE	Bar	90	00 mE	Bar	10	00 m	Bar	Motor
Model	КРМ	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Pole
	1450	13.4	4.1	5.5	12.5	7.0	11	11.9	9.7	15	11.3	12.4	15	10.9	14.5	18.5	10.6	17.7	22													4
	1750	16.7	4.9	7.5	15.8	8.1	11	15.3	11.3	15	14.7	14.5	18.5	14.3	17.6	22	13.9	20.8	30													4
110 405	2000	19.5	5.6	7.5	18.6	9.2	11	18	12.9	15	17.5	16.5	22	17.1	20.2	30	16.7	23.8	30	16.4	27.9	37	16.2	31.1	37	16	34.8	45	15.8	38.4	45	4
HG-125	2300	22.8	6.4	7.5	21.9	10.6	15	21.4	14.8	18.5	20.8	18.9	22	20.4	23.1	30	20	27.3	37	19.8	31.5	37	19.5	35.7	45	19.4	39.9	55	19.2	44	55	2
	2600	26.1	7.2	11	25.2	12	15	24.7	16.7	22	24.1	21.4	30	23.7	26.2	37	23.4	30.9	37	23.1	35.6	45	22.9	40.4	55	22.7	45.1	55	22.5	49.8	75	2
	2800	28.3	7.8	11	27.5	12.9	15	26.8	18	22	26.4	23.1	30	26	28.2	37	25.6	33.3	45	25.4	38.4	45	25.1	43.5	55	24.9	48.6	55	24.7	53.7	75	2
	1450	21.8	6.3	7.5	20.5	10.6	15	19.6	14.8	18.5	18.8	19.0	22	18.2	23.2	30	17.7	27.4	37													4
	1750	27.1	7.5	11	25.8	12.6	15	24.9	17.7	22	24.2	22.7	30	23.6	27.8	37	23.2	32.9	45													4
110 450	2000	31.6	8.5	11	30.3	14.3	18.5	29.4	20.1	30	28.7	25.9	30	28.2	31.8	37	27.7	37.6	45	27.3	43.4	55	27	46.7	55	26.7	55	75	26.5	60.8	75	4
HG-150	2300	36.9	9.7	15	35.7	16.3	22	34.9	23	30	34.2	29.7	37	33.6	36.4	45	33.2	43	55	32.8	49.7	75	32.5	56.4	75	32.2	63	75	32	69.7	90	2
	2600	42.3	10.8	15	41.1	18.3	22	40.4	25.9	30	39.6	33.4	45	39.1	40.9	55	38.6	48.5	55	38.2	56	75	37.9	63.5	75	37.7	71.1	90	37.4	78.6	90	2
	2800	45.9	11.6	15	44.7	19.7	30	43.8	27.8	37	43.2	35.9	45	42.7	44	55	42.3	52.2	75	41.9	60.3	75	41.6	68.4	90	41.3	76.5	90	41.1	84.6	110	2
	1150	23.5	5.1	7.5	22.1	9.7	11	20.9	14.2	18.5	19.9	18.7	22	19.1	23.3	30	18.3	27.8	37													4
	1450	30.6	6.8	11	29.1	12.5	15	28.1	18.2	22	27.0	24.0	30	26.2	29.7	37	25.4	35.4	45													4
	1750	37.7	8.7	11	36.2	15.6	18.5	35.1	22.5	30	34.1	29.4	37	33.2	36.6	45	32.5	43.2	55	31.8	50.1	75	31.1									4
HG-175	2000	43.6	10.3	15	42.1	18.2	22	41	26.1	37	40	33.9	45	39.2	41.8	55	38.4	49.7	75	37.7	57.6	75	37									4
	2300	50.7	12.5	15	49.2	21.5	30	48	30.6	37	47.1	39.7	55	46.2	48.7	75	45.5	57.8	75	44.7	66.9	90	44.1									2
	2600	57.8	14.9	18.5	56.3	25.2	30	55.1	35.4	45	54.2	45.7	55	53.3	55.9	75	52.5	66.2	90	51.8	76.4	90	51.2									2
	2800	62.5	16.6	22	61	27.8	37	59.9	38.7	55	58.9	49.7	75	58	60.8	75	57.3	71.8	90	56.6	82.9	110	55.9									2
	970	38.6	10.4	15	36.6	17.8	22	35.0	25.1	30	33.9	32.5	45	32.9	39.9	55	32.0	47.3	55													4
	1250	51.5	13.5	18.5	49.5	22.9	30	48.0	32.4	45	46.8	41.9	55	45.9	51.4	75	45.1	60.8	75													4
110,000	1450	60.7	15.4	18.5	58.7	26.3	37	57.3	37.3	45	56.1	48.3	55	55.2	59.3	75	54.4	70.3	90	53.8	81.3	110	53.1	92.3	110	52.6	103	132	52.2	114	132	4
HG-200	1600	67.6	16.8	22	65.6	28.9	37	64.2	41	55	63.1	53.2	75	62.1	65.3	75	61.3	77.4	90	60.7	89.5	110	60.1	102	132	59.6	114	132	59.2	126	160	4
	1750	74.5	18.3	22	72.5	31.5	37	71.1	44.8	55	70	58.1	75	69.1	71.3	90	68.3	84.6	110	67.6	97.9	132	67.1	111	160	66.6	124	160	66.2	138	160	4
	1900	81.4	19.8	30	79.5	34.2	45	78.1	48.6	55	77	63	75	76.1	77.5	90	75.3	91.9	110	74.6	106	132	74.1	121	160	73.6	135	160	73.1	150	185	4
	970	49.8	12.9	15	47.5	22.2	30	45.8	31.5	37	44.5	40.9	55	43.5	50.2	75	42.6	59.6	75													4
	1250	66.2	16.4	22	63.9	28.5	37	62.3	40.6	55	61.1	52.7	75	60.1	64.8	75	59.2	76.8	90													4
	1450	77.9	18.7	22	75.7	32.8	45	74.1	46.7	55	72.9	60.9	75	71.9	74.9	90	71.1	89	110	70.4	103	132	69.9	117	160							4
HG-250	1600	86.7	20.6	30	84.5	36.2	45	83	51.7	75	81.8	67.2	90	80.8	82.8	110	80	98.3	132	79.3	114	132	78.8	129	160							4
	1750	95.5	22.5	30	93.4	39.5	55	91.8	56.5	75	90.6	73.5	90	89.7	90.5	110	88.9	108	132	88.2	125	160	87.8	142	160							4
	1900	104	24.5	30	102	43	55	101	61.5	75	99.5	80.1	110	98.6	98.6	132	97.8	117	160	97.1	136	160	96.6	154	185							4

HG Three Lobe Roots Blower Vacuum Performance Table

Qs: Inlet Air Flow Rate (m³/min) La: Bar Power (kW) Po : Motor Power (kW)

Madal		-1	00 Mb	ar	-2	00 mE	Bar	-3	00 mE	Bar	-4	00 mE	Bar	-5(00 mE	Bar	Motor
woder	REM	Qs	La	Po	Qs	La	Ро	Qs	La	Po	Qs	La	Ро	Qs	La	Ро	Pole
	2000	1.70	1.00	1.5	1.30	1.40	2.2	1.00	1.70	2.2							4
	2500	2.29	1.20	1.5	1.78	1.70	2.2	1.54	2.10	3	1.36	2.6	4				2
	3000	2.88	1.4	2.2	2.37	1.9	3	2.03	2.5	3	1.85	3.1	4				2
HG-50V	3500	3.46	1.6	2.2	2.95	2.2	3	2.61	2.9	4	2.33	3.6	5.5				2
	4000	4.05	1.8	2.2	3.54	2.5	3	3.2	3.3	4	2.92	4.1	5.5	2.68	4.8	7.5	2
	4500	4.63	2	3	4.12	2.8	4	3.78	3.7	5.5	3.5	4.5	5.5	3.16	5.4	7.5	2
	2500	3.88	1.80	2.2	3.20	2.60	3	2.70	3.40	4	2.46	4.2	5.5				2
	3000	4.87	2.20	3	4.18	3.10	4	3.68	4.10	5.5	3.24	5.1	7.5				2
HG-65V	3500	5.85	2.5	3	5.16	3.7	5.5	4.66	4.8	5.5	4.22	5.9	7.5				2
	4000	6.83	2.9	4	6.14	4.2	5.5	5.64	5.5	7.5	5.2	6.7	11	4.86	8	11	2
	4500	7.81	3.2	4	7.12	4.7	5.5	6.62	6.1	7.5	6.18	7.6	11	5.84	9	11	2
	2000	5.94	2.30	3	5.31	3.50	5.5	4.76	4.70	5.5	4.21	5.9	7.5				4
	2300	7.05	2.70	4	6.44	4.00	5.5	5.89	5.40	7.5	5.35	6.8	11				2
	2500	7.8	2.9	4	7.19	4.4	5.5	6.65	5.9	7.5	6.11	7.3	11	5.52	8.8	11	2
HG-80V	2800	8.91	3.3	4	8.31	4.9	7.5	7.78	6.6	11	7.24	8.2	11	6.66	9.9	15	2
	3000	10.9	3.6	5.5	9.06	5.4	7.5	8.53	7.1	11	8	8.9	11	7.42	10.7	15	2
	3300	10.9	4	5.5	10.2	5.9	7.5	9.67	7.9	11	9.14	9.8	15	857	11.8	15	2
	3500	11.5	4.2	5.5	10.9	6.3	7.5	10.4	8.3	11	9.9	10.4	15	9.33	12.5	15	2
	3800	12.7	4.6	5.5	12.1	6.8	11	11.6	9.1	11	11	11.3	15	10.5	13.6	18.5	2
	2000	9.04	3.20	4	8.14	5.00	7.5	7.35	6.70	11	6.55	8.5	11				4
	2300	10.8	3.70	5.5	9.83	5.80	7.5	9.05	7.80	11	8.26	9.90	15				2
	2500	11.9	4.1	5.5	11	6.3	7.5	10.2	8.6	11	9.41	10.8	15	8.55	13	15	2
HG-100V	2800	13.6	4.7	5.5	12.7	7.2	11	11.9	9.7	15	11.1	12.2	15	10.3	14.7	18.5	2
	3000	14.7	5.1	7.5	13.8	7.8	11	13	10.4	15	12.3	13.1	18.5	11.4	15.8	18.5	2
	3300	16.4	5.5	7.5	15.5	8.5	11	14.7	11.4	15	14	14.4	18.5	13.2	17.3	22	2
	3500	17.5	5.8	7.5	16.6	8.9	11	15.9	12.1	15	15.1	15.2	18.5	14.3	18.3	22	2
	3800	19.2	6.3	7.5	18.3	9.7	15	17.6	13	15	16.8	16.4	22	16	19.8	30	2
	1450	13.4	4.10	5.5	12.1	7.00	11	11.1	9.70	15	10.1	12.4	15				4
	1750	16.6	4.90	7.5	15.5	8.10	11	14.5	11.3	15	13.4	14.5	18.5				4
HG-125V	2000	19.5	5.6	7.5	18.2	9.2	11	17.2	12.9	15	16.2	16.5	22	15.1	20.2	30	4
	2300	22.7	6.4	7.5	21.6	10.6	15	20.6	14.8	18.5	19.6	18.9	22	18.5	23.1	30	2
	2600	26.1	7.2	11	24.9	12	15	23.9	16.7	22	23	21.4	30	21.9	26.2	37	2
	2800	26.3	7.8	11	27.1	12.9	15	26.2	18	22	25.2	23.1	30	24.2	28.2	37	2

AIRCO

		-1	00 Mb	ar	-2	00 mE	Bar	-3	00 mE	Bar	-4	00 mE	Bar	-5	00 mE	Bar	Motor
wodei	RPIVI	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Qs	La	Po	Pole
	1450	21.7	6.30	7.5	19.9	10.6	15	18.4	14.8	18.5	16.9	19.0	22				4
	1750	27.0	7.50	11	25.3	12.6	15	23.9	17.7	22	22.4	22.7	30				4
	2000	31.4	8.5	11	29.8	14.3	18.5	28.4	20.1	30	27	25.9	30	25.5	31.8	37	4
110-1500	2300	36.8	9.7	15	35.2	16.3	22	33.9	23	30	32.5	29.7	37	31	36.4	45	2
	2600	42.1	10.8	15	40.6	18.3	22	39.3	25.9	30	38	33.4	45	36.5	40.9	55	2
	2800	45.7	11.6	15	44.2	19.7	30	42.9	27.8	37	41.7	35.9	45	40.2	44	55	2
	1150	23.4	5.10	7.5	21.5	9.7	11	19.7	14.2	18.5	17.9	18.7	22				4
	1450	30.4	6.80	11	28.6	12.5	15	26.8	18.2	22	25.1	24.0	30				4
	1750	37.5	8.7	11	35.6	15.6	18.5	33.9	22.5	30	32.2	29.4	37	30.1	36.3	45	4
HG-175V	2000	43.4	10.3	15	41.5	18.2	22	39.8	26.1	37	38.1	33.9	45	36	41.8	55	4
	2300	50.5	12.5	15	48.6	21.5	30	46.9	30.6	37	45.2	39.7	55	43	48.7	75	2
	2600	57.6	14.9	18.5	55.7	25.2	30	54	35.4	45	52.3	45.7	55	50.1	55.9	75	2
	2800	62.3	16.6	22	60.5	27.7	37	58.7	38.7	55	58.8	49.7	75	54.8	60.8	75	2
	970	38.3	10.4	15	35.8	17.8	22	33.3	25.1	30	30.8	32.5	45				4
	1250	51.2	13.5	18.5	48.6	22.9	30	46.3	32.4	45	44.1	41.9	55				4
HG_200V	1450	60.4	15.4	18.5	57.8	26.3	37	55.6	37.3	45	53.3	48.3	55	50.8	59.3	75	4
110-2000	1600	67.3	16.8	22	64.9	28.9	37	62.6	41	55	60.3	53.2	75	57.8	65.3	75	4
	1750	74.2	18.3	22	71.8	31.5	37	69.5	44.8	55	67.3	58.1	75	64.9	71.3	90	4
	1900	81.1	19.8	30	78.6	34.2	45	76.5	48.6	55	74.3	63	75	71.9	77.5	90	4
	970	49.5	12.9	15	40.5	22.2	30	43.8	31.5	37	41.2	40.9	55				4
	1250	65.9	16.4	22	62.9	28.5	37	60.4	40.6	55	57.8	52.7	75				4
	1450	77.5	18.7	22	74.8	32.8	45	72.2	46.8	55	69.7	60.9	75	67	74.9	90	4
110-2300	1600	86.4	20.6	30	83.7	36.2	45	81.1	51.7	75	78.7	67.2	90	76	82.8	110	4
	1750	95.2	22.5	30	92.5	39.5	55	90	56.5	75	87.6	73.5	90	85	90.5	110	4
	1900	104	24.5	30	101.1	43	55	98.9	61.5	75	96.5	80.1	110	93.9	98.6	132	4

Roots Blower Unit Installation Drawing

Foundation Drawing

										DIN	/ENS	SION	IS										
Blower Model	А	В	С	Е	F	G	J	н	H1	H2	к	L	L1	L2	М	N	Р	Q	DN	D1	D		d
HG 50	300	400	700	698	105	140	18	949	56	178	90	1000	850	75	310	105	173	410	50	125	165	4	
HG 65	300	400	700	698	115	150	18	978	56	178	90	1000	850	75	310	105	173	410	65	145	185	4	
HG 80	308	510	818	810	135	180	18	1216	56	220	157.5	1350	600	75	350	105	250	560	80	160	200		18
HG 100	340	570	920	890	150	180	18	1216	56	220	157.5	1350	600	75	350	105	250	560	100	180	220		
HG 125	435	615	1050	1020	165	200	18	1750	56	290	215	1640	720	100	595	105	356	743	125	210	250	0	
HG 150	505	615	1120	1090	180	220	18	1762	66	290	215	1640	720	100	595	134	356	745	150	240	285	8	
HG 175	578	725	1303	1220	190	250	23	1834	66	290	215	1640	720	100	647	134	376	745	200	295	340		00
HG-200	620	860	1480	1445	190	250	23	2189	66	305	300	2155	950	125	683	134	505	935	200	295	340		22
HG-250	720	760	1480	1445	230	300	45	2191	66	305	300	2155	950	125	683	134	505	937	250	350	395	12	

AIRCO

Roots Blower Unit Installation Drawing (With Acoustic Enclosure)

											DIM	ENS	SION	IS											
Blower Model	с	Е	F	G	J	H1	H2	к	L	L1	L2	N	x	X1	Xmax	Y	Y1	Ymax	z	Zmax	DN	D1	D		d
HG 50	700	698	105	140	18	56	178	90	1000			105	1800	565	1850	1300	680	1350	1300	1450	50	125	165	4	
HG 65	700	698	115	150	18	56	178	90	1000			105	1800	565	1850	1300	680	1350	1300	1450	65	145	185	4	
HG 80	818	810	135	180	18	56	220	157.5	1350	600	75	105	2100	660	2150	1600	870	1650	1700	1850	80	160	200		18
HG 100	920	890	150	180	18	56	220	157.5	1350	600	75	105	2100	660	2150	1600	930	1650	1700	1850	100	180	220		
HG 125	1050	1020	165	200	18	56	290	215	1640	720	100	105	2200	650	2250	1850	980	1900	2000	2240	125	210	250	0	
HG 150	1120	1090	180	220	18	66	290	215	1640	720	100	134	2200	650	2250	1850	980	1900	2000	2250	150	240	285	0	
HG 175	1303	1220	190	250	23	66	290	215	1640	720	100	134	2400	700	2450	2100	1100	2150	2000	2300	200	295	340		
HG-200	1480	1445	190	250	23	66	305	300	2155	950	125	134	2800	760	2850	2400	1250	2450	2600	2900	200	295	340		
HG-250	1480	1445	230	300	45	66	305	300	2155	950	125	134	2800	760	2850	2400	1250	2450	2600	2900	250	350	395	12	

EKİN ACADEMY

A chain is only as strong as its weakest link.

Running and maintaining a quality production process that meets international standards requires focusing on quality all along the ecosystem. Maintaining this focus requires a unifying vision of constant improvement shared by all stakeholder, and a certain level of expertise for all parties involved. Ekin Academy was established with the principles of continuous development and growing together to share the knowledge and experience that will realize this vision.

We support the development of our employees with training programs that directly contribute to the results in their business processes and make a difference in their personal development. We offer technical trainings on heat transfer, pressure vessels, package systems, food systems and liquid transfer. We help them become individuals who will make a difference with our development programs that covers topics like leadership, strategy, sales and many more. In addition, we provide information regarding installation, operating, maintenance and repairs with our pre and after sales training modules prepared for our business partners and customers.

At Ekin Academy we do not solely focus on the development of our staff, partners and customers. Thanks to our university collaborations, we provide the means for future engineers to put their theoretical knowledge to use with practical applications.

We organize seminars, conferences and trainings for professional chambers, and institutions we collaborate on social responsibility projects. Because we know that only by investing in the society, the industry and the future of the industry, we can become a country known for its highquality engineering products.

SALES TEAM

An Engineering Approach from Sales to Maintenance

We offer value added pre and after sale services with our customer satisfaction-oriented approach and deep expertise we are more than happy to share. Thanks to our expert engineers that provide proactive solutions, we focus on making a difference throughout the process, from presales to maintenance.

With our "quality product, quality service, quality solution" approach, we are more than a manufacturer and supplier, we are a highly motivated solution partner for all kinds of heating and cooling projects.

Customer Satisfaction

Our priority is to ensure customer satisfaction and protect the rights of our customers with our pre-sales processes that analyze customer needs well, quality-registered product range, expert staff and meticulous working methods.

Ethical Values

We conduct all our activities in accordance with the laws and then with ethical values. We believe in growing together and we look for mutual benefit in all our business relationships.

Privacy Policy

All your personal information shared with our company is guaranteed by our ethical values and our processes in compliance with the Law No. 6698 on Protection of Personal Data.

Information Security

All our information technology operations are protected by our information security processes, which are managed in accordance with ISO 27001 Information Security Management System requirements.

CERTIFICATES

TURK STANDARDLARI ENSTITUSU TORK STANDARDLARI MEMORY TURKISH STANDARDS INSTITUTION CERTIFICATE OF CONFORMITY TO TURKISH STANDARDS		
TN		
N. II Semilar	ar-m-10.5m	
NUMBER OF STREET OF STREET	at an inc.	
perili pe andra gitar pe accesto mit annés mine del peril à la tanné	af an inni	
Internet and a sets	table concentration springe applications and the LTD	
MUSE OF HE LEARNING HEAVE	Provide and the second se	
NETH TON AN	the department product research	
	pr	
Country of the pression of the set	A Conception of the particular and the state of a local data and	
PTW, RDLEW HELDE MANHAM Namul		
THE R. P. CONT.	307 (par 30.0)	
AND TRANSPORT	10 TM - Score in Transactory (Business, Score as, Marine to Hale Score M. Score-10 (A. 2015)	
NUMBER ADDRESS		
ten for Nacional Statement - Berl Paramental - Berl Paramental - Berl Paramental - Statement - Statement	TT I I I I I I I I I I I I I I I I I I	
	patients speed	
	Parateria Barganet Honesa, Barganet Adria HCLANE (BLACE) Barganetia, SEATON (BCCE)	
Million and		
	123	

	TREN
study summer in other	11-101-100-111
Which the second of function of the second s	94.0.0°
BELIEVEN DOR SECONDARY LAND	
The set of the second s	Annual of the second seco
MELLIN SAME CALMER COURSE AND	Differentiation of the set of the
Desire the AD	another the set are not the to on \$1
State of Long.	monotone registration of the state of the NO LET STREET
TENDER TO AN ADDRESS	101 - Jan
S. St. 1 Mar. Long Street and Table	(De 6 al CE Trac Autors Surpres 11 2:2021)
Manual Andreases	
Anna Coordina	nie na na sie sie niemen se sante. Nie na oang wante state sourtester.
	Encore Hannah Stran Bana Anto Kana Anton San Bana Anto Kana Anton San Anton Markan Anton Anton Markan Anton Anton Markan Anton Anton Markan Anton Ma

NOTES

PROFESSIONAL SYSTEM SOLUTION CENTER

From our MIT professional system solution center, you can get help with problems with your pumps, heat exchangers and your system. Our solution center consisting of our expert engineers will be happy to help you.

- Domestic hot water installations.
- Central and district heating systems.
- Milk, yogurt, heating, cooling and pasteurization systems.
- Industrial cooling and heating systems.
- Oil cooling systems.
- Energy recovery systems.
- Pool heating systems.
- Steam installations.

It is vital for your system to be designed and implemented correctly in the first installation in order to be able to operate at the desired capacity, smoothness and long life. For this reason, you can get first-hand

(in)

the technical support you need during the installation phase of your system and the problems that may arise in the business; You can reach us **24 hours +90 (216) 232 24 12 in 7 days**.

We would like to reiterate that we will be happy to share our knowledge accumulated over many years with our valued customers in order for your system to work correctly and performance.

Ekin will continue to be the best solution partner for you in all applications with all kinds of heating and cooling applications.

Follow us on social media...

Today; 135 points in the world.

Dudullu Organize Sanayi Bölgesi - Des Sanayi Sitesi 107. Sk. B14 Blok No: 2 Ümraniye / İstanbul / Turkey Phone: +90 216 232 24 12 Fax: +90 216 660 13 08 info@ekinendustriyel - www.ekinendustriyel.com

444 EKIN